Spelling suggestions: "subject:"nonlinearity."" "subject:"nonlinearityχ.""
101 |
Influence des paramètres mécaniques et géométriques sur le comportement statique de l’archet de violon en situation de jeu / Influence of mechanical and geometrical parameters on the static behavior of a violin bow in playing situationAblitzer, Frédéric 05 December 2011 (has links)
L'archet, élément indispensable à la production sonore des instruments à cordes frottées, a jusqu'à présent fait l'objet de peu d'études scientifiques. Le travail présenté a pour objectif de mieux comprendre son comportement mécanique en situation de jeu. À cette fin, des modèles numériques sont développés. La baguette, précontrainte par la tension du crin, est modélisée par des éléments finis de poutre en formulation corotationnelle, afin de prendre en compte la non-linéarité géométrique inhérente au problème. Un premier modèle (2D) rend compte du comportement de l'archet dans le plan. Il donne lieu à une étude numérique sur une géométrie standard, visant à mettre en évidence l'influence des paramètres de fabrication et de réglage sur le comportement de l'archet sous tension. Un second modèle (3D) intègre le caractère tridimensionnel des sollicitations rencontrées en situation de jeu, prenant en compte la flexion latérale de la baguette. Une procédure non destructive de détermination des propriétés mécaniques du bois et de la mèche, basée sur une méthode inverse utilisant le modèle 2D, est proposée. À titre de validation expérimentale, des résultats numériques obtenus avec le modèle 3D sont confrontés aux résultats de mesures sur deux archets, pour différents réglages du cambre et de la tension. L'effet de la précontrainte sur la raideur de flexion latérale de la baguette est mis en exergue. Le bon accord observé confère au modèle un caractère prédictif, offrant des perspectives d'utilisation en tant qu'outil d'aide à la facture. Par ailleurs, la stabilité de l'archet est un problème que les facteurs doivent prendre en considération. Un modèle phénoménologique basé sur un système mécanique simple est présenté. Il vise à donner certaines tendances sur les conditions d'apparition d'une instabilité par bifurcation ou par point limite, en faisant une analogie avec les propriétés de l'archet. Le calcul numérique du comportement pré- et post-critique de l'archet permet d'identifier des cas d'instabilité similaires, dont on discute les conséquences possibles sur le jeu et la facture. Dans une dernière partie, des essais en jeu axés sur les réglages du cambre et de la tension sont effectués par des musiciens. Les résultats de ces tests subjectifs tendent à montrer l'influence des paramètres de réglage examinés dans l'appréciation des qualités de jeu. / The bow, which is essential to produce the sound of bowed string instruments, has been little studied. The present work aims to better understand its mechanical behavior in playing situation. To this end, numerical models are developped. The stick, which is prestressed due to hair tension, is modelized by beam finite elements. A corotational formulation is adopted to take into account geometric nonlinearity. A first model (2D) concerns the in-plane behavior of the bow. It is used within a numerical study aiming at showing the influence of making and adjusting parameters on the tightened bow. A second model (3D) takes into account out-of-plane loading that makes the stick bend laterally. A non-destructive procedure to determine mechanical properties of wood and hair is proposed. It is based on an inverse method using the 2D model. As an experimental validation, numerical results obtained with the 3D model are confronted to measurement on two bows, for different settings of camber and hair tension. The effect of prestress on lateral bending stiffness is highlighted. A good agreement is observed. Thus, the model can be considered as predictive and might be used as an aid to bow making. Furthermore, the stability of a bow is a problem considered by bow makers. A phenomenological model based on a simple mechanical system is presented. It aims to give tendancies on conditions at which bifurcation or limit point instability can occur, by drawing an analogy with the bow. The numerical computation of pre- and post-critical behavior of the bow shows similar instability cases. Their possible consequences on playing and making are discussed. Finally, playing tests with musicians are carried out, focusing on the adjustment of camber and hair tension. The results tend to show the influence of the considered adjustment parameters on the assessment of playing qualities.
|
102 |
Nonlinear Seismic Responses of High-Speed Railway System considering Train-Bridge Interaction / 列車-橋梁連成系を考慮した高速鉄道システムの地震時非線形応答解析Lu, Xuzhao 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22418号 / 工博第4679号 / 新制||工||1730(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 KIM Chul-Woo, 教授 清野 純史, 教授 杉浦 邦征 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
103 |
Vypracování algoritmu a příslušného programového modulu pro statické a dynamické řešení lan na kladkách / Development of algorithm and pertinent program mogule for statical and dynamical analysis of cables on pulleysŠtekbauer, Hynek January 2015 (has links)
The goal of this master thesis is to develop an algorithm for solving cables on pulleys, which would be more efficient and accurate than existing algorithm used in software RFEM. This algorithm was integrated to the program for static and dynamic analysis of structures, in the form of particular program module. This work also contains examples of using this algorithm. The comparison of expected results with outcomes from the program is presented. The suitability for common practise is examined based on this comparison. The examples showed that the new algorithm for solving of cables on pulleys is more powerful and more accurate than existing solutions and most likely does not has equivalent competition.
|
104 |
Polariton quantum fluids in one-dimensional synthetic lattices : localization, propagation and interactions / Fluides quantiques de polartions dans des réseaux unidimensionnels synthétiques : localisation, propagation et interactionsGoblot, Valentin 31 January 2019 (has links)
Les microcavités à semiconducteurs apparaissent aujourd’hui comme une plateforme particulièrement propice à l’étude des fluides quantiques en interactions. Dans ces cavités, la lumière et les excitations électroniques sont confinées dans de petits volumes et leur couplage est rendu si fort que les propriétés optiques sont gouvernées par des quasi-particules hybrides lumière-matière appelées polaritons de cavité. Ces quasi-particules se propagent comme des photons, mais interagissent avec leur environnement via leur partie matière. Elles peuvent occuper massivement un même état quantique et se comporter comme une onde macroscopique cohérente et non-linéaire. On parle alors de fluide quantique de lumière. Dans cette thèse, nous étudions la dynamique de fluides quantiques de polaritons dans différentes microstructures unidimensionnelles. La technologie de gravure de microcavités planaires, développée au C2N, permet de réaliser une ingénierie complète du potentiel dans lequel nous générons ces fluides de polaritons et d’implémenter des géométries complexes. Dans une première partie, nous avons étudié les propriétés de localisation des états propres de réseaux synthétiques quasi-périodes. L’exploration théorique du diagramme de phase de localisation des modes propres a dévoilé une nouvelle transition de type délocalisation-localisation lors d’une déformation originale d’un quasi-cristal, transition que nous avons pu observer expérimentalement. Une deuxième partie de la thèse est consacrée à l’étude de la dynamique non-linéaire de deux fluides contra-propageant dans un canal unidimensionnel. La compétition entre énergie cinétique et énergie d’interactions conduit alors à l’apparition de solitons sombres, dont le nombre discret et la position peuvent être contrôlés optiquement. Nous avons mis en évidence une bistabilité contrôlée par la différence de phase imprimée sur les deux fluides. La dernière partie du travail concerne l’étude des non-linéarités pour un fluide de polaritons occupant une bande plate. L’énergie cinétique du fluide y est nulle, si bien que sa propagation est gelée. Nous observons alors la formation de domaines non-linéaires de taille quantifiée. Ce travail ouvre des perspectives prometteuses, tout particulièrement pour l’exploration de phases topologiques de bosons en interactions. De plus, augmenter les interactions permettrait d’utiliser notre plate-forme comme un simulateur quantique. / Semiconductor microcavities have emerged as a powerful platform for the study of interacting quantum fluids. In these cavities, light and electronic excitations are confined in small volumes, and their coupling is so strongly enhanced that optical properties are governed by hybrid light-matter quasiparticles, known as cavity polaritons. These quasiparticles propagate like photons and interact with their environment via their matter part. They can macroscopically occupy a single quantum state and then behave as an extended coherent nonlinear wave, i.e. as a quantum fluid of light. In this thesis, we study the nonlinear dynamics of polariton quantum fluids in various one-dimensional microstructures. The possibility to etch microstructures out of planar cavities, a technology developed at C2N, allows full engineering of the potential landscape for the polariton fluid, and implementing complex geometries. In a first part, we have studied the localization properties of the eigenstates in synthetic quasiperiodic lattices. Theoretical exploration of the localization phase diagram revealed a novel delocalization-localization transition in an original deformation of a quasicrystal and we have experimentally evidenced this transition. A second part of the thesis is dedicated to the study of the nonlinear dynamics of two counterpropagating polariton fluids in a one-dimensional channel. The interplay between kinetic and interaction energy is responsible for the formation of dark solitons, whose number and position can be controlled by optical means. We have evidenced a bistable behaviour controlled by the phase twist imprinted on the two fluids. The last part of this work addresses the study of nonlinearities for a fluid injected in a flat band. Therein, the kinetic energy of the fluid is quenched, so that propagation is frozen. We then observe the formation of nonlinear domains with quantized size. This work opens us exciting perspectives, specifically towards the exploration of topological phases of interacting bosons. Enhancing interactions would also allow using our platform for quantum simulation.
|
105 |
Projevy chaotického chování v pozorovaných a simulovaných řadách klimatických veličin / Manifestation of chaotic behavior in observed and simulated series of climatic variablesSkořepa, Jan January 2014 (has links)
Diplomová práce se věnuje analýze chaotického chování v řadách (pseudo)pozorovaných a simulovaných klimatických veličin. Nejprve objasňuji ně- které základní teoretické pojmy související s dynamickými systémy. Potom se zabývám zp·soby rekonstrukce fázového prostoru a uvedu metody odhadu kore- lační dimenze a největšího Ljapunovova exponentu. V praktické části se zabývám pr·měrnou denní teplotou z reanalýz ERA-40 a reanalýzami NCEP/NCAR v tlakových hladinách 850 a 500 hPa z let 1960-2000. Nejprve zkoumám podrobně jednu vybranou řadu. Používám např. metodu falešných soused· a určuji míru vzájemné informace. Zjiš'uji, že korelační dimenze nenabývá konkrétní hodnotu. Pro analýzu celých tlakových hladin vyvíjím program, který počítá divergenci blízkých trajektorií, což je postup používaný při výpočtu největšího Ljapunovo- va exponentu. Tento program postupně aplikuji na oblasti velikosti 20◦ × 30◦ kterými je pokryta celá zeměkoule. Postupně ukazuji a srovnávám výsledky pro reanalýzy v obou tlakových hladinách s ročním chodem a odečteným ročním cho- dem. Tuto metodu aplikuji na výstupy globálních klimatických model· HadCM3 a MPI-ESM-MR v hladině 500 hPa. Podobnou analýzu ještě uskutečňuji u jed- nodimenzionálních řad teploty u reanalýz a u model·. Výsledky opět vizuálně srovnávám. 1
|
106 |
Nonlinear waves in random lattices: localization and spreadingLaptyeva, Tetyana V. 04 March 2013 (has links)
Heterogeneity in lattice potentials (like random or quasiperiodic) can localize linear, non-interacting waves and halt their propagation. Nonlinearity induces wave interactions, enabling energy exchange and leading to chaotic dynamics. Understanding the interplay between the two is one of the topical problems of modern wave physics. In particular, one questions whether nonlinearity destroys localization and revives wave propagation, whether thresholds in wave energy/norm exist, and what the resulting wave transport mechanisms and characteristics are. Despite remarkable progress in the field, the answers to these questions remain controversial and no general agreement is currently achieved.
This thesis aims at resolving some of the controversies in the framework of nonlinear dynamics and computational physics. Following common practice, basic lattice models (discrete Klein-Gordon and nonlinear Schroedinger equations) were chosen to study the problem analytically and numerically. In the disordered linear case all eigenstates of such lattices are spatially localized manifesting Anderson localization, while nonlinearity couples them, enabling energy exchange and chaotic dynamics. For the first time we present a comprehensive picture of different subdiffusive spreading regimes and self-trapping phenomena, explain the underlying mechanisms and derive precise asymptotics of spreading. Moreover, we have successfully generalized the theory to models with spatially inhomogeneous nonlinearity, quasiperiodic potentials, higher lattice dimensions and arbitrary nonlinearity index.
Furthermore, we have revealed a remarkable similarity to the evolution of wave packets in the nonlinear diffusion equation. Finally, we have studied the limits of strong disorder and small nonlinearities to discover the probabilistic nature of Anderson localization in nonlinear disordered systems, demonstrating the finite probability of its destruction for arbitrarily small nonlinearity and exponentially small probability of its survival above a certain threshold in energy. Our findings give a new dimension to the theory of wave packet spreading in localizing environments, explain existing experimental results on matter and light waves dynamics in disordered and quasiperiodic lattice potentials, and offer experimentally testable predictions.
|
107 |
Silica Microspheres Functionalized with Self-assembled NanomaterialsKandas, Ishac Lamei Nagiub 22 January 2013 (has links)
A major limitation of silica-based high-Q microcavities is the lack of functionalities such as gain, plasmonic resonance, and second-order nonlinearity. Silica possesses third order nonlinearity but cannot produce second order nonlinearity, plasmonic resonances, or fluorescence emission. The key to overcome this deficiency is to develop versatile methods that can functionalize the surface of a silica microsphere with appropriate nanomaterials. The goal of this thesis is to present and characterize an electrostatic self-assembly based approach that can incorporate a large number of functional materials onto the surface of a silica resonator with nanoscale control. We consider several types of functional materials: polar ionic self-assembled multilayer (ISAM) films that possess second order nonlinearities, Au nanoparticles (NPs) that support plasmonic resonances, and fluorescent materials such as CdSe/ZnS core/shell QDs.
A major part of this thesis is to investigate the relationship between cavity Q factors and the amount of nanomaterials deposited onto the silica microspheres. In particular, we fabricate multiple functional microspheres with different ISAM film thickness and Au NPs density. We find that the Q factors of these microspheres are mainly limited by optical absorption in the case of the ISAM film, and a combination of optical absorption and scattering in the case of the Au NPs. By controlling the number of polymer layers or the NPs density, we can adjust the Q factors of these functional microspheres in the range of 106 to 107. An agreement between theoretical prediction and experimental data was obtained. The results may also be generalized to other functional materials including macromolecules, dyes, and non-spherical plasmonic NPs.
We also study the adsorption of Au NPs onto spherical silica surface from quiescent particle suspensions. The surfaces consist of microspheres fabricated from optical fibers and were coated with a polycation, enabling irreversible nanosphere adsorption. Our results fit well with theory, which predicts that particle adsorption rates depend strongly on surface geometry. This is particularly important for plasmonic sensors and other devices fabricated by depositing NPs from suspensions onto surfaces with non-trivial geometries.
We use two additional examples to illustrate the potential applications of this approach. First, we explored the possibility of achieving quasi-phase-matching (QPM) in a silica fiber taper coated with nonlinear polymers. Next, we carry out a preliminary investigation of lasing in a silica fiber coated with CdSe/ZnS core/shell quantum dots (QDs). / Ph. D.
|
108 |
Non-parametric nonlinearity detection under broadband excitationKolluri, Murali Mohan January 2019 (has links)
No description available.
|
109 |
Theoretical Characterization of Internal Resonance in Micro-Electro-Mechanical Systems (MEMS)Xue, Linfeng January 2020 (has links)
No description available.
|
110 |
Nonlinear Analysis of Plane Frames Subjected to Temperature ChangesGarcilazo, Juan Jose 01 May 2015 (has links) (PDF)
In this study, methods for the geometric nonlinear analysis and the material nonlinear analysis of plane frames subjected to elevated temperatures are presented. The method of analysis is based on a Eulerian (co-rotational) formulation, which was developed initially for static loads, and is extended herein to include geometric and material nonlinearities. Local element force-deformation relationships are derived using the beam-column theory, taking into consideration the effect of curvature due to temperature gradient across the element cross-section. The changes in element chord lengths due to thermal axial strain and bowing due to the temperature gradient are also taken into account. This "beam-column" approach, using stability and bowing functions, requires significantly fewer elements per member (i.e. beam/column) for the analysis of a framed structure than the "finite-element" approach. A computational technique, utilizing Newton-Raphson iterations, is developed to determine the nonlinear response of structures. The inclusion of the reduction factors for the coefficient of thermal expansion, modulus of elasticity and yield strength is introduced and implemented with the use of temperature-dependent formulas. A comparison of the AISC reduction factor equations to the Eurocode reduction factor equations were found to be in close agreement. Numerical solutions derived from geometric and material analyses are presented for a number of benchmark structures to demonstrate the feasibility of the proposed method of analysis. The solutions generated for the geometrical analysis of a cantilever beam and an axially restrained column yield results that were close in proximity to the exact, theoretical solution. The geometric nonlinear analysis of the one-story frame exhibited typical behavior that was relatively close to the experimental results, thereby indicating that the proposed method is accurate. The feasibility of extending the method of analysis to include the effects of material nonlinearity is also explored, and some preliminary results are presented for an experimentally tested simply supported beam and the aforementioned one-story frame. The solutions generated for these structures indicate that the present analysis accurately predicts the deflections at lower temperatures but overestimates the failure temperature and final deflection. This may be in part due to a post-buckling reaction after the first plastic hinge is formed. Additional research is, therefore, needed before this method can be used to analyze the materially nonlinear response of structures.
|
Page generated in 0.0633 seconds