• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 14
  • 12
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

FUS and Excitotoxicity Cross Paths in ALS: New Insights into Cellular Stress and Disease

Tischbein, Maeve 21 August 2018 (has links)
Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease characterized by motor neuron loss. Although pathological mutations exist in >15 genes, the mechanism(s) underlying ALS are unknown. FUS is one such gene and encodes the nuclear RNA-binding protein (RBP), fused in sarcoma (FUS), which actively shuttles between the nucleus and cytoplasm. Intriguingly, nearly half of the ALS mutations identified in FUS cause this protein to mislocalize, suggesting that FUS localization is relevant to disease. Here, we found that excitotoxicity, a neuronal stress caused by aberrant glutamate signaling, induces the rapid redistribution of FUS and additional disease-linked RBPs from the nucleus to the cytoplasm. As excitotoxicity is pathologically associated with ALS, it was notable that the nuclear egress of FUS was particularly robust. Further, ALS-FUS variants that predominantly localize to the nucleus also undergo redistribution. Thus, we sought to understand the purpose underlying FUS translocation and the potential relevance of this response to disease. As calcium dysregulation is strongly associated with neurodegenerative disorders, we examined the contribution of calcium to FUS egress. In addition to global changes to nucleocytoplasmic transport following excitotoxic insult, we observed that FUS translocation caused by excitotoxicity is calcium mediated. Moreover, we found that dendritic expression of Gria2, a transcript encoding an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit responsible for regulating calcium permeability, is FUS-dependent under conditions of stress. Together, these observations support the premise that FUS has a normal function during excitotoxic stress and that glutamatergic signaling may be dysregulated in FUS-mediated ALS.
12

Lost in Nucleocytoplasmic Transportation: New Insights Into FUS-Mediated Neurodegeneration

Lin, Yen-Chen 21 September 2020 (has links)
Nucleocytoplasmic transport (NCT) declines during aging and in the context of age-dependent neurodegenerative diseases. However, the mechanisms underlying NCT decline in the disease are poorly understood. FUS is an RNA binding protein that shuttles between the nucleus and cytoplasm and is actively involved in NCT. Mutations in FUS cause amyotrophic lateral sclerosis (ALS), a fatal and incurable motor neuron disorder. We sought to understand the disease mechanism underlying FUS-induced NCT decline in ALS. Here, I uncovered NCT-related defects in motor neurons derived from human induced pluripotent stem cells (iPSCs) harboring an ALS-linked FUS mutation. Importantly, these NCT defects were rescued by genetically correcting the FUS mutation in iPSCs. To gain insight into how expression of mutant FUS causes nuclear pore defects, I demonstrated an altered localization where FUS and nucleoporins (Nups) interact in situ within patient-derived human neurons. Moreover, FUS became aggregation-prone when interacting with Nup62 in vitro, and RNA further alleviated their aggregation propensity. Importantly, NCT-related defects and neuronal toxicity induced by ALS-FUS were ameliorated by modulating Nup expression in vivo. Collectively, these findings implicate aberrant Nup interactions in the pathogenic mechanism of ALS-FUS, and direct targeting the gain-of-function protein interactions could be therapeutic for multiple causes of neurodegeneration.
13

Nucleoporin-Related Leukemia: Nucleoporin rearrangements and their impact on nucleocytoplasmic transport and the proteome

Rodrigues Mendes, Maria Adélia 08 July 2020 (has links) (PDF)
Chromosomal rearrangements of the nucleoporin genes NUP214 and NUP98 are recurrent in aggressive cases of acute myeloid and lymphoid leukemias. NUP214 and NUP98 are components of the nuclear pore complex, a giant multiprotein structure that mediates nucleocytoplasmic shuttling. The two nucleoporins are enriched in phenylalanine-glycine (FG) repeats, which form the NPC permeability barrier and are essential for the interaction with nuclear transport receptors. NUP214 and NUP98 exhibit high affinity for the nuclear export receptor chromosomal region maintenance 1 (CRM1), which, alone, mediates the nuclear export of thousands of proteins and ribonucleoproteins. In the first part of this project, we report that the leukemogenic fusion proteins SET-NUP214 and DEK-NUP214 affect nucleocytoplasmic transport by perturbing the localization of essential nuclear transport factors, including endogenous nucleoporins and CRM1 nuclear export complexes. We further demonstrate that the two fusion proteins are sensitive to CRM1 inhibition and that targeted inhibition of nuclear export is sufficient to reduce the cell viability and proliferation of patient-derived cell lines with SET-NUP214 and DEK-NUP214 rearrangements. In the second part of the project, we used proximity-dependent biotin identification (BioID) to study the landscape of the NUP98-HOXA9 and SET-NUP214 environments. Though distinct endogenous binding partners have been documented for NUP214 and NUP98 chimeras, their total interactome has not been fully disclosed. Our results suggest that both fusion proteins interact with major regulators of RNA processing, with translation-associated proteins, and that both chimeras perturb the transcriptional program of the tumor suppressor p53. We further purpose that the two fusion proteins affect distinct cellular processes. According to our results, NUP98-HOXA9 likely perturbs Wnt, MAPK and estrogen receptor signaling pathways, as well as the cytoskeleton, the latter likely due to its interaction with the nuclear export receptor CRM1. Conversely, SET-NUP214 appears to affect cellular metabolism, likely due to the interaction with mitochondrial proteins and metabolic regulators. Overall, this research project provided new data supporting that CRM1 might be a possible therapeutic target in NUP214-related leukemia and revealed new clues on the mechanistic actions of nucleoporin fusion proteins. Hence, our findings might be of particular relevance in the search of new druggable targets for the treatment of nucleoporin-related leukemia. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
14

Analyzing the eukaryotic translation initiation apparatus and new approaches in affinity chromatography

Seefeldt, Jennifer 14 November 2014 (has links)
No description available.
15

Analysen zum nukleozytoplasmatischen Transport von Regulatorproteinen des circadianen Rhythmus / Analysis of the nucleocytoplasmic transport of circadian clock proteins

Loop, Susanne 30 June 2004 (has links)
No description available.
16

Identification of nuclear export signals and structural analysis of transport complexes. / Identification of nuclear export signals and structural analysis of transport complexes.

Kadian, Chandini 21 September 2012 (has links)
No description available.
17

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

Matchett, K.B., McFarlane, S., Hamilton, S.E., Eltuhamy, Y.S.A., Davidson, M.A., Murray, J.T., Faheem, A.M., El-Tanani, Mohamed 2014 January 1924 (has links)
No / Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
18

The function of Nup358 in nucleocytoplasmic transport / Die Funktion von Nup358 im nukleocytoplasmatischen Transport

Wälde, Sarah 23 August 2010 (has links)
No description available.
19

In Silico Perspectives on RNA Structures Modulating Viral Gene Expression and Mechanics of tRNA Transport

Gupta, Asmita January 2015 (has links) (PDF)
The repertoire of cellular functions mediated by Ribonucleic acid (RNA) molecules have expanded considerably during the last two decades. The role played by RNA in controlling and regulating gene expression in viruses, prokaryotes and eukaryotes has been a matter of continuous investigations. This interest has arisen primarily due to the discoveries of cisacting RNA structures like riboswitches, ribosensors and frameshift elements, which are found in either the 5’-, 3’-untranslated regions of mRNA or in the open reading frames. These structures control gene expression at the level of translation by either sequestering the Shine-Dalgarno (SD) sequence to regulate translation initiation or modulating ribosomal positions during an active translation process. Very often, these structures comprise of an RNA pseudoknot and it has been observed that these pseudoknots exist in a dynamic equilibrium with other intermediate structures. This equilibrium could be shifted by several factors including presence of ions, metabolites, temperature and external force. RNA pseudoknots represent the most versatile and ubiquitous class of RNA structures in the cell, whose unique folding topology could be exploited in a number of ways by the cellular machinery. In this thesis, a thorough study of programmed -1 ribosomal frameshifting (-1 PRF) process, which is a well known gene regulation event employed by many RNA viruses, was carried out. -1 PRF is a translation recoding process, necessary for viruses to main-tain a stoichiometric ratio of structural: enzymatic proteins. This ratio varies among different viral species. At the heart of this process, lies an RNA pseudoknot accompanied by a seven nucleotide long sequence motif, which pauses an actively translating ribosome on mRNA and causes it to shift its reading frame. The frameshift inducing efficiency of pseudoknot depends on multiple factors, for example the time scale of ribosomal pause and RNA unfolding, subsequent refolding of structure to native/intermediate states and/or environment conditions. With the aim of illustrating the fundamentals of the process, multiple factors involved in -1 PRF were studied. Chapters 2-4 represent distinct aspects of -1 PRF process, while Chapter 5 discusses a different work concerned with nucleocytoplasmic transport of tRNA carried out by nuclear export receptor Exporting. Chapter 1 gives an overview of the different regulatory activities with which RNA structures and sequences are found to be associated and the evolution of these stud-ies. It discusses the different types of structural motifs found to constitute tertiary RNA structure and secondary structure prediction and determination techniques. A brief description of ab initio RNA structure modeling and other relevant tools and methodologies used in this work has been presented. Details of techniques used in each study have been provided in relevant chapters. Chapter 2 describes how local factors like ionic conditions, hydration patterns, presence of protonated residues and single residue mutations affect the structural dynamics of an RNA pseudoknot involved in -1 PRF from a plant luteovirus. Single residue mutations in the loop regions or certain base-pair inversions in the stem regions of pseudoknot increase the frameshift inducing ability of the pseudoknot structure, while some others decrease this efficiency. However, it was not clear how the changes made to the wild-type (WT) RNA pseudoknot from Beet Western Yellow Mosaic virus were affecting the global structure in terms of its dynamics and other parameters. To study this, multiple all-atom molecular dynamics simulations (MD) were performed on WT and mutant structures created in silico. The effect of presence and absence of magnesium ions on the structural geometry was also studied. The analysis was done to identify the increase/decrease in the number of hydrogen bonds formed by Watson-Crick base-pairs in stem region or non Watson-Crick pairs between stem and loop. Ionic and water densities were analyzed and the role of potential ribosome-pseudoknot interaction was elaborated. With the aim of mimicking ribosome induced unfolding of an RNA pseudoknot, steered molecular dynamics pulling experiments were performed. This work was done primarily to understand the unfolding pathway of Hairpin(H)-type pseudoknots in general and the intermediate structures formed. Chapter 3 describes the thermodynamics and mechanics associated with the mechanical pulling of -1 PRF inducing RNA pseudoknot and its mutants described in previous chapter. Analysis of the trajectories reveal relative unfolding patterns in terms of disruption of various hydrogen bonds. This study allowed us to pinpoint the kind of intermediate structures being formed during pulling and whether these intermediate structures correspond to any known secondary structures, such as simple stem-loops. This information could be used for gaining insights into the folding pathways of these structures. An RNA pseudoknot stimulates -1 PRF in conjunction with a heptanucleotide “slippery site” and an intervening spacer sequence. A comprehensive study of analyzing the sequence signatures and composition of all overlapping gene segments harboring these frameshift elements from four different RNA virus families was carried out. Chapter 4 describes the sequence composition of all overlapping gene segments in Astroviridae, Coronaviridae, Retroviridae and Luteoviridae viral families which are known to employ -1 PRF process for maintaining their protein products. Sequence analysis revealed preference for GC bases in the structure forming sequence regions. A comparative study between multiple sequence alignment and secondary structure prediction revealed that while pseudoknots have a clear preference for specific base-pairs in their stem regions, viral families that employ a hairpin loop as -1 PRF structure, doesn’t show this preference. Information derived from secondary structure prediction was then used for RNA ab initio modeling to generate tertiary structures. Furthermore, the structural parameters were calculated for the helices of the frameshift inducing pseudoknots and were compared with the values calculated for a set of non -1 PRF inducing H-type pseudo-knots. This study highlighted the differences between -1 PRF pseudoknots and other H-type pseudoknot structures as well as specific sequence and structural preferences of the former. Chapter 5 discusses the dynamics of a tRNA transport factor Exportint (Xpot), which transports mature tRNA molecules from nucleus to cytoplasm and belongs to Importitβ family of proteins. The global conformational dynamics of other transport receptors has been reported earlier, using coarse-grained modeling and Elastic Network Models (ENMs), but a detailed description of the dynamics at an all-atomic resolution was lacking. This transport requires association of Xpot with RanGTP, a G-protein, in the nucleus and hydrolysis of RanGTP in the cytoplasm. The chain of events leading to tRNA release from Xpot after RanGTP hydrolysis was not studied previously. With these objectives, several molecular complexes containing Xpot bound to Ran or tRNA or both in the GTP and GDP ligand states as well as free Xpot structures in nuclear and cytosolic forms were studied. A combination of conventional and accelerated molecular dynamics simulations was used to study these molecular complexes. The study highlighted various aspects associated with tRNA release and conformational change which occurs in Xpot in cytosolic form. The nuclear to cytosolic state transition in Xpot could be attributed to large fluctuations in C-terminal region and dynamic hinge-points located between specific HEAT repeats. A secondary role of Xpot in controlling the quality of tRNA transport has been proposed based on multiple sequence and structure alignment with Importin-β protein. The loss of critical contacts like hydrogen bonds and salt bridges between Xpot/Ran and Xpot/tRNA interface was evaluated in order to study the initial effects of RanGTP hydrolysis and how it influences receptor-cargo binding. This study revealed various aspects of tRNA transport process by Xpot, not understood previously. The results presented in this thesis illustrate the role of RNA sequence elements and pseudoknots present in RNA viruses in modulating -1 PRF process and how multiple environmental factors affect -1 PRF inducing ability of the structure. From the studies of Xpot and its complexes, the effects of GTP hydrolysis leading to tRNA dissociation have been presented and the progression of conformational transition in Xpot after tRNA dissociation has been highlighted. Chapter 6 summarizes major conclusions of this thesis work. The refolding of single stranded RNA chains, subjected to a previous unfolding simulation is studied. Appendix A describes this work and initial results. Appendix B describes the effect of improved molecular dynamics force fields, containing corrections for χ torsion angle for RNA, on the conformation of tertiary RNA structures. Part of the work presented in this thesis has been reported in the following publications. 1.Asmita Gupta and Manju Bansal. Local Structural and Environmental Factors De-fine the Efficiency of an RNA Pseudoknot Involved in Programmed Ribosomal Frameshift Process. J. Phys. Chem. B. 118 (41), pp 11905-11920. 2014 2.Asmita Gupta, Senthilkumar Kailasam and Manju Bansal. Insights Into Nucleo-cytoplasmic Transport of tRNA by Exportin-t. Manuscript under review. List of manuscripts that are being prepared from the work reported in Chapter 3 in this thesis. 1 Asmita Gupta and Manju Bansal. The role of sequence effects on altering the un-folding pathway of an RNA pseudoknot: a steered molecular dynamics study. Manuscript in preparation. 2 Asmita Gupta and Manju Bansal. Molecular basis for nucleocytoplasmic transport of tRNA by Exportin-t. Journal of Biomolecular Structure and Dynamics, May;33 Suppl 1:59-60, 2015
20

From the centrosome to the nuclear envelope and beyond: insights into the role of CRM1 in adenoviral genome delivery

Lagadec, Floriane 31 May 2021 (has links)
Les adénovirus (AdV) sont des virus à ADN se répliquant dans le noyau de la cellule hôte. Pour pouvoir se répliquer, ils détournent la machinerie cellulaire à leur profit. Au cours de l’entrée dans la cellule, les particules virales utilisent la machinerie de transport des microtubules pour rejoindre le noyau. Les AdV interagissent avec la dynéine, moteur moléculaire associé aux microtubules, pour être transportés vers le compartiment nucléaire. Ils se lient alors aux pores nucléaires, structures ancrées dans l’enveloppe nucléaire (EN). Une fois aux pores nucléaires, les capsides virales se désassemblent pour libérer et importer leur génome. Les mécanismes de détachement des microtubules, de translocation nucléaire et d’import du génome des AdV impliquent des facteurs de la machinerie de transport nucléocytoplasmique. Cependant, le mécanisme exact utilisé par les virus pour atteindre les pores nucléaires n’est pas clairement défini. Le transport nucléocytoplasmique est composé de différents facteurs et est hautement régulé dans les cellules. Le transport actif de cargos est dû à des facteurs d’import et d’export interagissant avec RanGTP. Le principal facteur d’export est CRM1 et il est connu pour être essentiel dans la translocation des AdV vers l’EN. L’inhibition de CRM1 par la Leptomycine B conduit à l’accumulation des AdV au centrosome, le principal Centre Organisateur des Microtubules (COMT) des cellules de mammifères. Nous avons donc étudié le rôle de CRM1 dans la libération du génome adénoviral. Nous avons analysé l’interaction des AdVs avec le COMT et nous avons observé que l’absence de facteurs cytoplasmiques ainsi que la perte d’intégrité des microtubules n’affectaient pas leur accumulation au COMT. En revanche, nous avons identifié et caractérisé un mutant de CRM1, qui reste fonctionnel pour l’export physiologique de cargo mais qui induit un retard important dans la translocation des AdV vers l’EN. Nous avons utilisé l’imagerie sur cellules vivantes pour analyser l’infection de l’AdV dans des cellules mitotiques et ceci a permis de révéler le rôle de CRM1 dans la libération du génome de ce virus. Nous avons également identifié un partenaire viral potentiel pour CRM1 parmi les protéines associées au génome viral, la Terminal Protein (TP). Cette protéine possède un signal d’export nucléaire et est un substrat de CRM1. Nos données soulignent le rôle de CRM1 comme un médiateur essentiel au désassemblage total de la capside adénovirale, qui favorise la libération du génome et son import.

Page generated in 0.051 seconds