• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 45
  • 9
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 57
  • 43
  • 43
  • 43
  • 32
  • 28
  • 23
  • 23
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
72

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
73

Síntese e caracterização de óxidos de manganês puros e dopados com cátions metálicos utilizados como materiais aplicados em dispositivos eletroquímicos de conversão de energia / Synthesis and characterization of pure and cations doped manganese oxides used as materials in electrochemical energy conversion devices

Bôas, Naiza Vilas 10 November 2017 (has links)
O dióxido de manganês (MnO2) é um catalisador eficiente de baixo custo utilizado no cátodo de baterias do tipo metal-ar e células a combustível alcalinas, sendo capaz de promover a redução completa de oxigênio pela rota 4e-. No entanto, o dióxido de manganês é um semicondutor e só pode ser utilizado como material eletródico nos dispositivos mencionados se combinado com algum suporte condutor. O suporte condutor mais utilizado para este fim é o carbono em pó. Entretanto, este material não possui estabilidade suficiente nas condições operacionais das células alcalinas, sendo convertido gradativamente em CO2. Uma das possíveis estratégias para tentar minimizar esta deficiência é incrementar a condutividade eletrônica do óxido puro pela dopagem com alguns cátions metálicos. Sendo assim, este trabalho tem como objetivo geral pesquisar de maneira sistemática o efeito da dopagem de dióxido de manganês com alguns cátions metálicos, como o Bi3+e Ce4+ nas propriedades físico-químicas e eletrocatalíticas deste óxido, visando o uso dos mesmos como em cátodos de baterias recarregáveis do tipo Zn-ar. As análises das características morfológicas dos catalisadores por meio de MEV e TEM mostram que os óxidos de manganês são gerados na forma de nano-bastões de 50 a 100 nm de comprimento. Os óxidos puros e dopados com bismuto e cério apresentam estruturas tetragonais típicas, ocorrendo expansão da célula unitária dos óxidos dopados pela troca de íons manganês pelos correspondentes dopantes na rede cristalina de MnO2. Os resultados eletroquímicos sugerem um aumento de condutividade do óxido dopado que possibilita seu uso sem mistura com carbono. Além disso, observa-se que a RRO é catalisada por um mecanismo que envolve a transferência de 4e- nestes materiais com participação de peróxido como intermediário. O óxido de manganês dopado com Bi apresentou promissor desempenho catalítico para a RDO, o que junto com os demais resultados apresentados para a RRO o qualificou a funcionar como o catalisador bifuncional mais promissor de todos os estudados em baterias do tipo metal-ar. Experimentos realizados em mini baterias do tipo Zn-ar demonstraram a total capacidade do catalisador dopado com bismuto operar como catalisador do eletrodo de ar, resultando num desempenho superior ao de um catalisador convencional de MnO2/C. / Manganese dioxide is at the same time an efficient and low-cost material used as cathode catalyst in the air electrode of metal-air and alkaline fuel cells, capable to promote the complete reduction of oxygen thru the 4e- mechanism. However, manganese dioxide is a semiconductor and can be used as electrodic material in the mentioned devices only combined with a conductor support. High surface area carbon powder is the most commonly used material for such purpose. The problem is that carbon suffers from severe instabilities in the experimental conditions that fuel cells and metal-air batteries operates, being gradually converted into CO2. A possible strategy to overcome or at least minimize the low oxide conductivity is by doping this material with some metallic cations. In this sense, the main purpose of this work was the systematic investigation of the physicochemical and electrocatalytic properties of Bi3+ and Ce4+ doped manganese dioxide materials used as cathode catalysts in the air electrode of alkaline type Zn-air batteries. The morphologic characterization performed SEM and TEM revealed that pure as well cation doped MnO2 are formed as poly dispersed nanorods with 50-100 nm length. Both pure and doped materials presented typical tetragonal structures, although a cell expansion was observed in the doped oxides caused by the exchange of some manganese cations by the doping counter parts. Electrochemical results suggest that a material with increased conductivity results from the doping process, allowing it to operate as air catalyst without the use of a carbon support. Besides, it is observed that the oxygen reduction reaction proceeds thru the 4e- mechanism on the doped oxides involving hydrogen peroxide as intermediate. The Bi doped oxide presented the best performance for the oxygen evolution reaction among all catalysts investigated. This result together with the superior performance for the oxygen reduction reaction presented by this material suggest that Bi doped MnO2 is a potential candidate to operate as an air catalyst of rechargeable alkaline metal-air batteries. Experiments conducted in a mini Zn-air battery using Bi doped MnO2 as air catalyst corroborated this observation.
74

Estudo dos efeitos de contaminadores sobre o desempenho das células a combustível de membrana de eletrólito polimérico / Diagnosing the effects contaminants have over polymer electrolyte membrane fuel cells

Lopes, Thiago 25 May 2010 (has links)
Os componentes do conjunto membrana/eletrodos (MEA) das células a combustível de membrana de eletrólito polimérico/Polymer Electrolyte Membrane Fuel Cells (PEMFC) são sensíveis a impurezas, as quais podem vir do ar, do gás combustível e/ou da degradação dos componentes do módulo. Amônia, sulfeto de hidrogênio e monóxido de carbono são juntos os três principais subprodutos cotaminadores nos processos de geração de hidrogênio por reforma de combustíveis. Estes contaminadores afetam negativamente o desempenho das PEMFCs, assim é importante o entendimento destes efeitos para mitigá-los e introduzir a tecnologia das PEMFCs no mercado consumidor. Desta forma experimentos foram realizados visando diagnosticar os efeitos da amônia e do sulfeto de hidrogênio sobre os componentes do MEA das PEMFCs. Para a contaminação por sulfeto de hidrogênio foi provado, utilizando-se da técnica de cromatografia gasosa e de stripping, que a contaminação ocorre através da interação química e eletroquímica do contaminador com a superfície do catalisador de platina, e que estas interações ocorrem via um processo dissociativo e um processo oxidativos respectivamente. Estes processos de interação geram enxofre adsorvido sobre a superfície da platina, a qual é bloqueada para posterior oxidação de hidrogênio, gerando sobrepotenciais que reduzem a diferença de potencial da célula. Utilizando-se da técnica de cromatografia gasosa e agora de voltametria cíclica foi mostrado na PEMFC, que durante o processo de remoção do enxofre adsorvido a platina dióxido de enxofre é gerado. Ainda na PEMFC, foi mostrado utilizando-se da técnica de \"air bleed\" que maiores tolerâncias ao sulfeto de hidrogênio podem ser alcançadas, apesar de ser insignificante. Para o caso da contaminação da PEMFC por amônia, indiretamente foi mostrado, utilizando-se técnicas eletroquímicas solução de ácido perclórico, que amônia pode afetar a reação de redução de oxigênio pela sua adsorção sobre a superfície do catalisador, ou pelo bloqueio da mesma para posterior adsorção/redução de oxigênio. Em estudos de absorção de água e condutividade de membranas de NafionTM, sob diferentes frações catiônicas (prótons/amônio), em contato com água na fase vapor sob diferentes atividades, foi mostrado que quanto maior a concentração de íons contaminadores no eletrólito menor a quantidade de água absorvida e menor a condutividade da membrana. Também foi mostrado que se tais membranas fossem usadas como eletrólito em PEMFCs, o desempenho da célula seria afetado drasticamente por perdas ôhmicas. Também foi mostrado que sob contaminação por amônia, PEMFCs sofrem aumentos em resistências ôhmicas devido a reduções na condutividade do eletrólito, contudo foi provado que esta representa menos de dez por cento do total de perdas observadas no desempenho da célula. Desde estudo foi concluído que amônia afeta o desempenho das PEMFCs principalmente pela redução na atividade dos prótons na camada catalítica catódica, que causa reduções no potencial misto de equilíbrio da reação de redução de oxigênio, e portanto na diferença de potencial da célula. Finalmente foi provado indiretamente que amônia deixa a célula através do equilíbrio de amônio com água, o qual deslocado gera amônia, a qual deixa a célula junto com o fluxo de gás cotódico. / The Membrane Electrode Assembly components of a PEMFC are sensitive to impurities, which can came with the air or hydrogen stream, or from the degradation of the stack components. Ammonia, hydrogen sulfide and carbon monoxide are together the main sub-products of fuel reforming processes for generating hydrogen. These contaminants negatively affect the PEMFC performance, so it is important to understand what those effects are in order to mitigate them and introduce PEMFC technology in the mass market. Therefore, experiments were carried out to diagnose the effects hydrogen sulfide and ammonia have on the MEA components of PEMFCs. For contamination by hydrogen sulfide it was proved utilizing EMS and stripping techniques that the poisoning process happens by chemical and electrochemical interactions of the contaminant with the Platinum catalyst surface, and that these interactions happen by a dissociative and oxidative process, respectively. Those processes generate sulfur adsorbed on the Platinum surface, which blocks it for further hydrogen oxidation, generating overpotentials, which reduce the cell potential. Utilizing the EMS and now the cyclic voltammetry technique it was shown that during the process of removing sulfur from the Platinum surface one generates sulfur dioxide. Using the Air Bleed technique it was shown that higher tolerances of the PEMFC against hydrogen sulfide can be reached, despite being insignificant. For contamination of the cell by ammonia it was indirectly proved utilizing electrochemical techniques in perchloric acid solutions that ammonia can affect the oxygen reduction reaction by adsorbing on the catalyst surface, or by blocking the surface for further oxygen adsorption/reduction. Studying water uptake and ionic conductivity of Nafion membranes under many different cation fractions (proton/ammonium) in contact with water vapor at different temperatures and water activities, it was proved that the more ammonium one has in the membrane the less will be the water uptake and ionic conductivity of it. It was also shown that if those membranes were used as electrolyte in PEMFC the cell performance would be severely affected by ohmic losses. It was also shown that under ammonia exposure PEMFCs suffer by ohmic resistance increases due to the lowering in the ionic conductivity of the electrolyte, however it was proved that it represent less than ten percent of the observed losses in the cell performance. From this study it was concluded that ammonia mainly affect the PEMFC performance by lowering the cathode catalyst layer proton activity, which lowers the oxygen reduction reaction equilibrium potential, and then the cell potential. Finally it was indirectly proved that ammonia leaves the cell by the equilibrium of ammonium and water, which dislocated generates ammonia that leaves the cell together with the cathode gas stream.
75

Catalisadores à  base de metais não nobres formados por carbeto de tungstênio/carbono com estruturas FeNx e N/C para reação de redução do oxigênio / Catalysts based on non-noble metals formed by tungsten carbide/carbon with FeNx and N/C structures for oxygen reduction reaction

Rêgo, Ulisses Alves do 13 July 2018 (has links)
Este trabalho teve como objetivo investigar eletrocatalisadores de baixo custo à base de carbeto de tungstênio, carbono e ferro submetidos a diferentes processos de nitretação quanto à atividade catalítica para reação de redução do oxigênio (RRO) nos eletrólitos ácido e alcalino. Os catalisadores foram divididos em três séries distintas, a primeira compreendendo aqueles onde houve variação da carga de carbeto de tungstênio em relação ao suporte de carbono, que foram impregnados com o complexo Fe2+(2,4,6-Tris(2-piridil)-1,3,5-Triazina)2, [Fe(TPTZ)2]2+ e tratados em duas temperaturas diferentes, 700 e 800 oC em atmosfera de nitrogênio. Na segunda série foi mantida constante a carga de carbeto de tungstênio (30% de W/C, m/m) sendo que esta mescla foi preparada usando carbonos dopados previamente com três fontes distintas de nitrogênio (HNO3, NH3 e HNO3/NH3); isto foi seguido pela incorporação do complexo Fe[TPTZ]2+ e pelos mesmos tratamentos térmicos acima mencionados. Na terceira série, os eletrocatalisadores foram preparados com três tipos de carbonos (Vulcan, Ketjenblack e Monarch), aos quais foi incorporado o complexo Fe[TPTZ]2+, seguido pelo tratamento térmico a 800 °C em atmosfera de nitrogênio e então por dopagem com amônia a 950 °C. As três séries de eletrocatalisadores sintetizados neste trabalho foram cuidadosamente caracterizadas por espectroscopia infra-vermelho e UV-Visível, difratometria de raio-x, microscopia eletrônica de transmissão, energia dispersiva de raios-x, espectroscipia Raman, espectroscopia fotoeletrônica de raios-x. As investigações eletroquímicas foram realizadas por voltametria cíclica (VC) e pelo levantamento de curvas de polarização de estado estacionário para a RRO, usando a técnica de eletrodo de disco/anel rotatório, com materiais catalíticos formando filmes finos depositados no eletrodo de disco. Nas três séries de catalisadores foram desenvolvidos materiais com bom desempenho para a RRO. Nos estudos da primeira série de catalisadores, notou-se que o material mais ativo foi aquele formado por WC-FeNx/C com 30 % de W/C e 5% de Fe pirolisado a 800 °C. Na segunda série foi observado que os desempenhos dos catalisadores variaram de acordo com o tipo de protocolo de nitretação, presença de ferro e temperatura de tratamento térmico. Em eletrólito alcalino, os eletrocatalisadores apresentaram maiores desempenhos, que resultaram bastante próximos em relação ao do catalisador de Pt dispersa em carbono usado como referência. Na terceira série de eletrocatalisadores investigados, verificou-se que o melhor desempenho obtido foi com o catalisador com carbono Monarch com amônia, cuja atividade catalítica resultou superior à dos demais, devido ao maior número de estruturas ativas FeNx e N/C formadas pelo tratamento com amônia. Os resultados nos meios ácido e alcalino para a primeira e segunda séries de eletrocatalisadores sugerem a ocorrência de um mecanismo indireto (2e- + 2e-), ou seja, em meio ácido (alcalino) primeiro o O2 reduz para H2O2 (HO2 ) e depois de H2O2 (HO2 ) para H2O. Os sítios predominantemente envolvidos na catálise da reação são WC e FeNx em meio ácido e WC e N/C em meio alcalino. Finalmente, para a terceira série de eletrocatalisadores o mecanismo reacional em meio ácido envolve um mecanismo direto de 4e-, com participação importante dos sítios ativos de Fe-N2. / This work aims to investigate low cost electrocatalysts based on tungsten carbide, carbon and iron submitted to different nitriding processes for the catalytic activity for the oxygen reduction reaction (ORR) in acid and alkaline electrolytes. The catalysts were divided into three distinct series, the first one comprising those with different tungsten carbide loads with respect to the carbon support, which were impregnated with the Fe2+ (2,4,6-Tris (2-pyridyl) - 1,3,5-triazine)2, [Fe (TPTZ)]2+, complex and treated at two different temperatures, 700 and 800 oC in nitrogen atmosphere. In the second series, the tungsten carbide load (30% W/C, m/m) was kept constant but this mixture was prepared using previously doped carbons using three different sources of nitrogen (HNO3, NH3 and HNO3/NH3); this was followed by the incorporation of the Fe[TPTZ]2+ complex and by the same heat treatments as mentioned above. In the third series, the electrocatalysts were prepared with three carbon types (Vulcan, Ketjenblack and Monarch), to which the Fe[TPTZ]2+ complex was added, followed by heat treatment at 800 °C under nitrogen and then by nitriding using a flow of ammonia at 950 °C. The three series of electrocatalysts synthesized in this work were carefully characterized by infra-red and UV-Visible spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive, Raman spectroscopy, x-ray photoelectron spectroscopy. The electrochemical investigations were performed by cyclic voltammetry (CV) and by measurements of steady-state polarization curves for ORR using rotating ring-disc electrode technique, with catalytic materials forming thin films deposited on the disc. In the three catalyst series, materials with good performance for the ORR were developed. In the studies of the first series of catalysts, it was seen that the most active material was that formed by WC-FeNx/C with 30%W/C and 5% Fe pyrolyzed at 800 ° C. In the second series it was observed that the performances of the catalysts varied according to the type of nitriding protocol, presence of iron and temperature of heat treatment. The electrocatalysts showed higher performances in alkaline electrolyte, which were very close to that of a reference Pt/C catalyst. In the third series of electrocatalysts, the best performance was obtained with the Monarch carbon catalyst heat-treated with ammonia, whose catalytic activity was higher than all others, due to the greater number of FeNx and N/C active structures formed by the treatment with ammonia. The results in acidic and alkaline conditions for the first and second series of electrocatalysts suggest the occurrence of an indirect ORR mechanism (2e- + 2e-), that is, in acid (alkaline) media first O2 is reduced to H2O2 (HO2) followed by the reduction of H2O2 (HO2). The active sites predominantly involved in the reaction electrocatalysis are WC and FeNx in acid media and WC e N/C in alcaline media. Finally, for the third series of electrocatalysts, the acidic reaction involves a direct 4e- mechanism, having important participation of the Fe-N2 active sites.
76

Síntese e Investigação da Atividade de Eletrocatalisadores Formados por Elementos Abundantes do Tipo M-N-C para a Reação Redução de Oxigênio / Synthesis and Investigation of the electrocatalytic Activity of materials based by Abundant Elements of Type M-N-C for the oxygen reduction reaction

Oliveira, Francisca Elenice Rodrigues de 10 April 2018 (has links)
O desenvolvimento de células de combustível de formato direto encontra obstáculos importantes relacionados com a lenta cinética da reação de redução de oxigênio e baixa tolerância ao formato em cátodos baseados em Pt. Neste estudo, foram sintetizados eletrocatalisadores com diferentes estruturas, formados por elementos abundantes, e suas atividades e seletividades para a RRO foram testadas em meiacélulas e em células unitárias de formato / ar, em eletrólito alcalino. Os resultados mostraram que nanopartículas de liga de ferro-cobalto, encapsuladas por carbono grafítico, e nitretos metálicos nanoestruturados, suportados em carbono, (caracterizados por TEM e XRD) não apresentam atividades eletrocatalíticas superiores ao carbono puro (Vulcan amorfo ou grafitizado). Carbono dopado com nitrogênio (N-C) mostrou um aumento no potencial de meia-onda, evidenciando um influente papel do nitrogênio na eletrocatálise da RRO, mas com alto sobrepotencial. A inserção de oxigênio via tratamento térmico em ar, formando óxidos de FeCo nanoestruturados, suportados por carbono, produziu, como esperado, um aumento considerável na atividade, mostrando que a ligação do ferro ou cobalto com o oxigênio tem papel importante, provavelmente, na alta reatividade redox para a transferência de elétrons para o RRO. A adição de um precursor de nitrogênio durante a síntese (imidazol) resultou na formação de estruturas formadas por átomos de ferro e cobalto, coordenados por nitrogênio, inseridos em uma matriz de carbono, como revelado por EXAFS, mostrou que as estruturas M-N-C têm papel decisivo na atividade eletrocatalítica para a RRO (aproximando-se da Pt/C) e, também, mostrou alta tolerância à presença de íons formato. Experimentos em células a combustível unitárias, com difusão natural de formato e com cátodo aberto ao ar, com elétrodo de difusão de gás, mostraram densidades de potência de 15,5 e 10,5 mW cm-2 com eletrólitos à base de hidróxido e carbonato de potássio, respectivamente, e com estabilidade de operação maior que 120 h a 0,3 mA cm-2. Portanto, os resultados deste trabalho mostram o papel decisivo de estruturas M-NC (coordenadas) na alta atividade para a ORR, em altos potenciais, excluindo-se atividades atribuídas a nanoestruturas de nitretos metálicos e nanopartículas metálicas encapsuladas, incluindo as dopadas por nitrogênio na superfície. / The development of direct formate fuel cells encounters significant obstacles related to the slow kinetics of the oxygen reduction reaction (ORR) and low formate tolerance in Pt-based cathodes. In this study, electrocatalysts with different structures, composed of abundant elements, were synthesized, and their activities and selectivities for the ORR were tested in half-cells and in single cells in alkaline electrolyte. The results showed that carbon-encapsulated nanoparticles of iron-cobalt alloy and carbon-supported nanostructured metal nitrides (characterized by TEM and XRD) do not present electrocatalytic activities superior to pure carbon (amorphous or graphitized Vulcan). Nitrogen-doped carbon (N-C) showed an increase in the halfwave potential, evidencing an influential role of nitrogen in the electrocatalysis of the ORR, but with a high overpotential. The insertion of oxygen through heat treatment in air, forming carbon-supported nanostructured FeCo oxides, produced, as expected, an increase in activity, probably due to the high oxide reactivity for the electronic mediation processes for the ORR. The addition of a nitrogen precursor during the synthesis (imidazole) resulted in the formation of structures formed by iron and cobalt atoms, coordinated by nitrogen, inserted in a carbon matrix, as revealed by EXAFS, and showed that M-N-C structures play a decisive role in the electrocatalytic activity for the ORR (approaching Pt/C) and, also, showed high tolerance to the presence of ions format. Experiments in single cells with air-breathing cathode and with natural diffusion of formate, showed power densities of 15.5 and 10.5 mW cm-2 with hydroxide and carbonate-based electrolytes, respectively, and with operating stability higher than 120 h at 0.3 mA cm-2. Therefore, the results of this work show the decisive role of M-N-C structures (coordination) in the high activity for the ORR, in high potentials, excluding activities attributed to nanostructures of metallic nitrides and encapsulated metallic nanoparticles, including those doped by surface nitrogen.
77

Estudo da atividade eletrocatalítica de óxidos nanoestruturados de Ru, Ir, Hf e La visando o estudo da reação de redução de oxigênio (RRO) / Study of electrocatalytic activity of nanostructured oxides of Ru, Ir, Hf and La for the study of the oxygen reduction reaction (ORR)

Reis, Jonas Batista 04 September 2015 (has links)
Neste trabalho foi estudada a atividade eletrocatalítica dos eletrocatalisadores nanoestruturados de Ru, Ir, Hf ou La suportados em carbono Printex 6L frente à Reação de Redução de Oxigênio (RRO) em meio ácido. Inicialmente analisou-se a influência do Método de Impregnação e dos Precursores Poliméricos (MPP), também conhecido como Pechini para os eletrocatalisadores RuO2/C e IrO2/C. Ficou evidente neste estudo, que os materiais obtidos pelo MPP apresentaram uma maior eficiência de corrente para a eletrogeração de H2O2 quando comparado ao método da Impregnação. Na etapa seguinte, os eletrocatalisadores HfO2/C e LaONO3/C foram preparados apenas pelo MPP. As propriedades estruturais, morfológicas e de superfície foram investigadas por meio das técnicas de caracterização DRX, FRX, MET, XPS e TG. De acordo com os dados de DRX e MET, verificou-se que o método de incorporação do metal no carbono Printex 6L favoreceu a formação dos óxidos nanoestruturados. Ademais, foi verificado que os eletrocatalisadores obtidos pelo método de Pechini apresentam menores tamanho de cristalitos (1 a 5 nm), melhor distribuição dos óxidos sobre a matriz de carbono (menos aglomerados) e menores tamanhos de partículas. O comportamento eletroquímico dos eletrocatalisadores foi avaliado através das voltametrias lineares (curvas de polarização) obtidas pelo eletrodo de disco anel rotatório (RRDE). Os resultados obtidos pelas voltametrias lineares, cálculos de eficiência de corrente de H2O2 (H2O2 %), número total de elétrons trocados (nt) e de Koutecký-Levich mostraram que a incorporação dos eletrocatalisadores (Ru e Ir) no carbono Printex 6L obtidos por ambos os métodos de síntese influenciaram negativamente na eletrogeração de H2O2. Neste caso, os eletrocatalisadores de Ru e Ir apresentaram uma tendência ao mecanismo via 4 elétrons, ou seja, geração de H2O como produto final da RRO. Os resultados mostraram ainda que os eletrocatalisadores contendo maiores teores de Hf, apresentaram maiores eficiência de corrente para H2O2 quando comparado ao carbono Printex 6L, uma vez que o catalisador contendo 15 % de Hf apresentou valores de eficiência de corrente de H2O2 próximos a 80 % e número de elétrons de 2,4. Além disso, foi observado também um deslocamento no potencial de aproximadamente 200 mV para valores mais positivos, o que significa um menor consumo energético em termos de eletrogeração de H2O2. Para os eletrocatalisadores à base de La, a amostra contendo 7% apresentou uma melhor eficiência de corrente de H2O2, com valores próximos a 87% e número de elétrons de 2,3, além de um deslocamento do potencial de aproximadamente 250 mV para valores mais positivos. Pode-se inferir então, que os eletrocatalisadores de Hf e La obtidos pelo método de Pechini são promissores para utilização em Eletrodos de Difusão Gasosa (EDG) visando a eletrogeração in situ de H2O2, visto que apresentam uma tendência a mecanismo via 2 elétrons. / In the present work, the electrocatalytic activity of nanostructured electrocatalysts based on Ru, Ir, Hf or La supported in Printex L6 front of Oxygen Reduction Reaction (ORR) in an acid medium were studied. Initially, the influence of impregnation methods and polymeric precursors (MPP), also known as Pechini for the electrocatalysts RuO2/C and IrO2/C, was analyzed. It was evidenced in this study, that the materials obtained by MPP presented bigger efficiency for H2O2 electrogeneration when compared to the impregnation method. In the following stage, the electrocatalysts HfO2/C and LaONO3/C were prepared only by MPP. The structural properties and surface morphology were investigated by means of the characterization techniques DRX, FRX, TEM, XPS and TG. According to the XRD and TEM data, it was found that the method of metal incorporation in Printex 6L carbon promoted the formation of nanostructured oxides. Moreover, it was verified that the electrocatalysts obtained by Pechini\'s method presented smaller crystallite size (1 to 5 nm), better distribution of the oxides on the carbon matrix (fewer clusters) and smaller particle sizes. The electrochemical behavior of the electrocatalysts were evaluated by linear voltammetry (polarization curves) obtained by rotating ring-disk electrode (RRDE). The results obtained by linear voltammetry, calculations of current efficiency of H2O2 (H2O2 %), total number of exchanged electrons (nt) and of Koutecký-Levich showed that the incorporation of the electrocatalysts (Ru and Ir) in Printex 6L carbon obtained by both methods of synthesis influenced negatively on the electrogeneration of H2O2. In that case, the Ru and Ir electrocatalysts showed a tendency to a 4 electrons mechanism, that is, generation of H2O as final product of the ORR. The results also showed that the electrocatalysts containing higher Hf content, presented higher current efficiency for H2O2 when compared to carbon Printex L6, since that the catalyst containing 15% of Hf presented values of current efficiency for H2O2 around 80% and number of electrons of 2.4. Furthermore, a potential displacement for positive values of approximately 200 mV was also observed which means lower energy consumption in terms of H2O2 electrogeneration. For the La based electrocatalysts, the sample containing 7% showed better current efficiency for H2O2, with values near 87% and number of electrons of 2.3, besides a potential displacement of approximately 250 mV for more values positive. It can be inferred that the Hf and La electrocatalysts obtained by Pechini\'s method are promising for use in Gas Diffusion Electrodes (GDE) aiming in situ electrogeneration of H2O2, since they exhibit a tendency to a mechanism via 2 electrons.
78

Estudo das propriedades eletrocatalíticas de óxidos de manganês puros ou modificados com cobre e bismuto para reação de redução de oxigênio em meio alcalino / Study of the electrocatalytic properties of pure manganese oxide or modified with copper and bismuth for oxygen reduction reaction in alkaline medium

Frejlich, Sara Walmsley 13 March 2015 (has links)
Catalisadores catódicos para aplicação em células a combustível alcalinas (AFCs) baseados em dióxido de manganês, como alternativa aos tradicionais catalisadores baseados em platina foram estudados no presente trabalho. O principal objetivo foi avaliar a viabilidade do uso de α-MnO2 através do estudo da atividade eletrocatalítica frente à reação de redução de oxigênio (RRO) do referido óxido em comparação com a atividade eletrocatalítica do material de referência baseado em platina, visando minimizar os elevados custos desses catalisadores que tornam muito restrita a comercialização das células a combustível apesar das vantagens comprovadas desse tipo de tecnologia. O uso de α-MnO2 para completa substituição da platina se mostrou viável por apresentar atividade catalítica comparável à da platina, e com a vantagem adicional de ser um material de menor custo devido à sua abundância. Estudos prévios demonstraram que a RRO catalisada pelo dióxido de manganês ocorre preferencialmente por duas vias: redução direta via quatro elétrons, ou redução por dois elétrons com formação de peróxido de hidrogênio como produto final. A redução direta via quatro elétrons é o mecanismo mais comum, seguido na maioria das estruturas cristalográficas, e é o mecanismo de reação de interesse para aplicação em células a combustível, sendo, portanto, o peróxido de hidrogênio um produto indesejável para esse tipo de aplicação. Foram promovidas modificações do referido óxido de manganês (α-MnO2) pela incorporação de metais não nobres (Cu e Bi) para estudar o impacto dessas modificações nas propriedades físico-químicas desses óxidos. Os resultados obtidos demonstraram que a dopagem com Cu não promoveu alterações significativas nas propriedades desses óxidos. Em contrapartida, a dopagem com bismuto promoveu resultados significativos. A incorporação de Bi3+ na estrutura cristalina do α-MnO2 promoveu o aumento da condutividade eletrônica desse óxido, permitindo assim a eliminação do suporte de carbono, ocasionando desse modo, a eliminação quase que total da formação de peróxido de hidrogênio. Dessa maneira, os resultados mostraram que no caso específico desse material dopado, a RRO se dá predominantemente pela redução direta via quatro elétrons. Os resultados apresentados no presente trabalho, demonstraram que a dopagem do α-MnO2 com Bi3+ resulta em um material bastante promissor como catalisador catódico de AFCs. / Cathode catalysts for application in alkaline fuel cells (AFCs) based on manganese dioxide as alternative to traditional platinum-based catalysts were studied in this work. The main objective was to evaluate the feasibility of using α-MnO2 through the study of electrocatalytic activity toward the oxygen reduction reaction (ORR) of said oxide compared to the electrocatalytic activity of platinum-based reference materials, aiming to cheapen the high costs of these catalysts that make very limited the marketing of fuel cells despite the proven benefits of such technology. The use of α-MnO2 as a complete substitution of platinum demonstrated to be viable due to its catalytic activity comparable with that of platinum, having the additional advantage of being a less costly material because of its abundance. Previous studies demonstrated that the ORR catalyzed by manganese dioxide takes place preferably in two ways: Direct reduction via four electrons or two electrons by reduction with formation of hydrogen peroxide as the final product. The direct reduction via four electrons is the most common mechanism, followed in most crystal structures, and the reaction mechanism is the one of interest for application in fuel cells. The production of hydrogen peroxide is undesirable for this type of application. Modifications of said manganese oxide (α-MnO2) by the incorporation of non-noble metals (Cu and Bi) were promoted to study the impact of these modifications on the physicochemical properties of these oxides. The results showed that doping with Cu did not cause significant changes in the properties of these oxides. By contrast, doping with bismuth promoted interesting and significant results. The incorporation of Bi3+ in a crystalline structure of α-MnO2 promoted the increase of the electronic conductivity of this oxide, thereby allowing the elimination of the carbon support, consequently causing the almost complete elimination of the formation of hydrogen peroxide. Thus, the results showed that in the specific case of this doped material, the ORR occurs predominantly by direct reduction via 4 electrons. The results presented in this study demonstrated that the α-MnO2 doped with Bi3+ showed a very promising cathode material for application in AFCs.
79

Investigação do mecanismo cinético da reação de redução de oxigênio em solventes não aquosos / Investigation of the kinetic mechanism of the oxygen reduction reaction in non-aqueous solvents

Silva, Nelson Alexandre Galiote 12 February 2016 (has links)
O aumento no consumo energético e a crescente preocupação ambiental frente à emissão de gases poluentes criam um apelo mundial favorável para pesquisas de novas tecnologias não poluentes de fontes de energia. Baterias recarregáveis de lítio-ar em solventes não aquosos possuem uma alta densidade de energia teórica (5200 Wh kg-1), o que as tornam promissoras para aplicação em dispositivos estacionários e em veículos elétricos. Entretanto, muitos problemas relacionados ao cátodo necessitam ser contornados para permitir a aplicação desta tecnologia, por exemplo, a baixa reversibilidade das reações, baixa potência e instabilidades dos materiais empregados nos eletrodos e dos solventes eletrolíticos. Assim, neste trabalho um modelo cinético foi empregado para os dados experimentais de espectroscopia de impedância eletroquímica, para a obtenção das constantes cinéticas das etapas elementares do mecanismo da reação de redução de oxigênio (RRO), o que permitiu investigar a influência de parâmetros como o tipo e tamanho de partícula do eletrocatalisador, o papel do solvente utilizado na RRO e compreender melhor as reações ocorridas no cátodo dessa bateria. A investigação inicial se deu com a utilização de sistemas menos complexos como uma folha de platina ou eletrodo de carbono vítreo como eletrodos de trabalho em 1,2-dimetoxietano (DME)/perclorato de lítio (LiClO4). A seguir, sistemas complexos com a presença de nanopartículas de carbono favoreceu o processo de adsorção das moléculas de oxigênio e aumentou ligeiramente (uma ordem de magnitude) a etapa de formação de superóxido de lítio (etapa determinante de reação) quando comparada com os eletrodos de platina e carbono vítreo, atribuída à presença dos grupos laterais mediando à transferência eletrônica para as moléculas de oxigênio. No entanto, foi observada uma rápida passivação da superfície eletrocatalítica através da formação de filmes finos de Li2O2 e Li2CO3 aumentando o sobrepotencial da bateria durante a carga (diferença de potencial entre a carga e descarga > 1 V). Adicionalmente, a incorporação das nanopartículas de platina (Ptnp), ao invés da folha de platina, resultou no aumento da constante cinética da etapa determinante da reação em duas ordens de magnitude, o qual pode ser atribuído a uma mudança das propriedades eletrônicas na banda d metálica em função do tamanho nanométrico das partículas, e estas modificações contribuíram para uma melhor eficiência energética quando comparado ao sistema sem a presença de eletrocatalisador. Entretanto, as Ptnp se mostraram não específicas para a RRO, catalisando as reações de degradação do solvente eletrolítico e diminuindo rapidamente a eficiência energética do dispositivo prático, devido ao acúmulo de material no eletrodo. O emprego de líquido iônico como solvente eletrolítico, ao invés de DME, promoveu uma maior estabilização do intermediário superóxido formado na primeira etapa de transferência eletrônica, devido à interação com os cátions do líquido iônico em solução, o qual resultou em um valor de constante cinética da formação do superóxido de três ordens de magnitude maior que o obtido com o mesmo eletrodo de carbono vítreo em DME, além de diminuir as reações de degradação do solvente. Estes fatores podem contribuir para uma maior potência e ciclabilidade da bateria de lítio-ar operando com líquidos iônicos. / The increasing in energetic consumption and environmental concerning toward rising in the emission of pollutant gases create a favorable scenario to develop non-pollutant technologies and more efficient energy storages. Rechargeable non-aqueous lithium-air batteries possess high theoretical energy density (5200 Wh kg-1), characterizing as a promising system to stationary and electric vehicles applications. However, many issues on the cathode electrode should be addressed to enable this technology, for example, low reversibility of the reactions, low rate-capability and instabilities issues from cathode materials and electrolytic solvents. Here, a kinetic model was employed for modulate the experimental impedance data in order to obtain the rate constants of elementary steps from oxygen reduction reaction (ORR), which allows the investigation of the role of some parameters such as, type and grain size of electrocatalysts, and the solvent influence. The initial investigation were with less complexes systems of platinum bulk or glassy carbon as the working electrode in 1,2-dimethoxyethane (DME)/lithium perchlorate (LiClO4). Based on that, the role of carbon nanoparticles in the ORR was an increasing the oxygen adsorption process, and by slightly increasing (one order of magnitude) the superoxide formation (rate determining step) as when compared with platinum and glassy carbon electrodes due to the presence of side groups acting as mediators to the electron transfer. Nonetheless, a fast surface passivation was observed in function of Li2O2 and Li2CO3 thin films formations, and these films increase the battery overpotential during the charge process (potential difference between charge/discharge >1V). In addition, dispersed platinum nanoparticles (Ptnp) resulted in an increase of two orders of magnitude on the rate constant of the rate determining step when compared to platinum bulk. This can be explained due to changes in electronic properties of metallic d-bands in function of nanometric size. These changes contributed to enhance the energetic efficiency of the practical device when compared to the non-catalyzed system. However, the Ptnp were non-specific toward the ORR catalyzing the electrolyte degradation reactions, and decreasing the energy efficiency faster than the non-catalyzed system. The ionic liquid rather than DME promoted better stabilization process for intermediary superoxide due to interaction between cations present in solution, resulting in an outstanding enhancement of the rate constant for rate determining step (three orders of magnitude) when compared to the same working electrode in DME. In addition, decrease the electrolyte degradation reaction. These factors can improve a higher rate-capability and cycle life of the practical lithium-air batteries.
80

Eletrogeração de peróxido de hidrogênio (H2O2) em eletrodos de difusão gasosa (EDG) modificados com quinonas (metil-p-benzoquinona, antraquinona-2-ácido carboxílico e ácido antraflávico) e azocomposto (Sudan Red 7B) / Electrogeneration of hydrogen peroxide (H2O2) in gas diffusion electrodes (GDE) modified with quinones (methyl-p-benzoquinone, anthraquinone-2-carboxylic acid and anthraflavic acid) and azo compound (Sudan Red 7B)

Juliana Moreira 13 November 2018 (has links)
Os processos oxidativos avançados (POA) são uma alternativa para complementar os processos clássicos de tratamento de efluentes que podem não ser eficientes para remoção de alguns tipos de poluentes como, por exemplo, os poluentes emergentes. Os POA se baseiam na geração de espécies altamente reativas (radicais hidroxila), a partir de peróxido de hidrogênio (H2O2), que oxidam os poluentes. O H2O2 pode ser eletrogerado in situ pela reação de redução de oxigênio (RRO) no meio reacional. O uso de eletrodos de difusão gasosa (EDG) altamente porosos proporciona o suprimento de oxigênio na interface eletrodo/solução podendo aumentar a velocidade da RRO. O uso de modificadores como quinonas e azocompostos imobilizados à matriz de carbono dos EDG podem aumentar a geração de H2O2. Portanto, os modificadores orgânicos Sudan Red 7B (SR7B), metil-p-benzoquinona (MPB), ácido antraflávico (AA) e antraquinona-2-ácido carboxílico (A2CA) foram adicionados em diferentes teores ao carbono Printex L6 (CP) e microcamadas porosas destes materiais foram estudados por voltametria cíclica e de varredura linear em eletrodo de disco-anel rotatório (RRDE). Os materiais contendo 0,5% de SR7B e 5,0% de MPB levaram a aumento na eficiência de geração de H2O2 para 86,2 e 85,5%, respectivamente, em relação ao CP puro que levou a 82,8%. EDG de CP modificados com 0,5% de SR7B foram construídos com telas metálicas em sua faces externas e a aplicação de densidades de corrente de 75, 100 e 150 mA cm-2 levou a uma maior eletrogeração de H2O2. Em densidades de corrente de 75 mA cm-2, o EDG modificado gerou 1020,1 mg L-1 de H2O2 com consumo energético de 118,0 kWh kg-1 de H2O2, constante cinética aparente de 37,3 mg L-1 min-1 e eficiência de corrente de 17,9%, enquanto o EDG de CP puro gerou menor concentração de H2O2; 717, 3 mg L-1, com maior consumo energético; 168,5 kWh kg-1, menor constante cinética aparente; 21,4 mg L-1 min-1, e menor eficiência de corrente; 12,6%. Portanto, o EDG modificado poderia ser empregado em sistemas que precisem de altas gerações de H2O2. / The advanced oxidation processes (AOP) are an alternative to the classical processes of treatment of effluents that may not be effective for the removal of some types of pollutants such as emerging pollutants. The AOP are based on the highly reactive species (hydroxyl radicals) from hydrogen peroxide (H2O2), which oxidize pollutants. H2O2 can be electrogenerated in situ by the oxygen reduction reaction (ORR) in the reaction medium. The use of highly porous gas diffusion electrodes (GDE) provides the supply of oxygen at the electrode/solution interface, which can increase the RRO speed. The use of modifiers such as quinones and azocompounds immobilized on the carbon matrix of GDE may increase H2O2 generation. Therefore, the organic modifiers Sudan Red 7B (SR7B), methyl-p-benzoquinone (MPB), anthraflavic acid (AA) and anthraquinone-2-carboxylic acid (A2CA) were added in different contents to carbon Printex L6 (CP) and microporous layers of these materials were studied by cyclic voltammetry and linear sweep voltammetry on a rotating ring- disc electrode (RRDE). Materials with 0.5% of SR7B and 5.0% of MPB increased the current efficiency for electrogeneration of H2O2 to 86.2 and 85.5%, respectively, in relation to pure CP that leaded to 82.8%. GDE of CP modified with 0.5% of SR7B were constructed with metallic screens on their outer faces and an application of current densities of 75, 100 and 150 mA cm-2 led to a greater electrogeneration of H2O2. At current densities of 75 mA cm-2, the modified GDE generated 1020.1 mg L-1 of H2O2 with energy consumption of 118.0 kWh kg-1 of H2O2, apparent kinetic constant of 37.3 mg L-1 min-1 and current efficiency of 17.9%, while GDE of pure CP generated lower H2O2 concentration; 717, 3 mg L-1, with higher energy consumption; 168.5 kWh kg-1, lower apparent kinetic constant; 21.4 mg L-1 min-1, and lower current efficiency; 12.6%. Therefore, the modified GDE could be applied in systems that require high generations of H2O2.

Page generated in 0.031 seconds