• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Harvesting and Path Planning in UAV-aided Internet-of-Things Wireless Networks with Reinforcement Learning : KTH Thesis Report / Datainsamling och vägplanering i UAV-stödda Internet-of-Things trådlösa nätverk med förstärkningsinlärning : KTH Examensrapport

Zhang, Yuming January 2023 (has links)
In recent years, Unmanned aerial vehicles (UAVs) have developed rapidly due to advances in aerospace technology, and wireless communication systems. As a result of their versatility, cost-effectiveness, and flexibility of deployment, UAVs have been developed to accomplish a variety of large and complex tasks without terrain restrictions, such as battlefield operations, search and rescue under disaster conditions, monitoring, etc. Data collection and offloading missions in The internet of thingss (IoTs) networks can be accomplished with the use of UAVs as network edge nodes. The fundamental challenge in such scenarios is to develop a UAV movement policy that enhances the quality of mission completion and avoids collisions. Real-time learning based on neural networks has been proven to be an effective method for solving decision-making problems in a dynamic, unknown environment. In this thesis, we assume a real-life scenario in which a UAV collects data from Ground base stations (GBSs) without knowing the information of the environment. A UAV is responsible for the MOO including collecting data, avoiding obstacles, path planning, and conserving energy. Two Deep reinforcement learnings (DRLs) approaches were implemented in this thesis and compared. / Under de senaste åren har UAV utvecklats snabbt på grund av framsteg inom flygteknik och trådlösa kommunikationssystem. Som ett resultat av deras mångsidighet, kostnadseffektivitet och flexibilitet i utbyggnaden har UAV:er utvecklats för att utföra en mängd stora och komplexa uppgifter utan terrängrestriktioner, såsom slagfältsoperationer, sök och räddning under katastrofförhållanden, övervakning, etc. Data insamlings- och avlastningsuppdrag i IoT-nätverk kan utföras med användning av UAV:er som nätverkskantnoder. Den grundläggande utmaningen i sådana scenarier är att utveckla en UAV-rörelsepolicy som förbättrar kvaliteten på uppdragets slutförande och undviker kollisioner. Realtidsinlärning baserad på neurala nätverk har visat sig vara en effektiv metod för att lösa beslutsfattande problem i en dynamisk, okänd miljö. I den här avhandlingen utgår vi från ett verkligt scenario där en UAV samlar in data från GBS utan att känna till informationen om miljön. En UAV är ansvarig för MOO inklusive insamling av data, undvikande av hinder, vägplanering och energibesparing. Två DRL-metoder implementerades i denna avhandling och jämfördes.
2

DRONAR: Obstacle echolocation using ego-noise / DRONAR: Egenljudsekolokalisering av hinder

Nilsson, Henrik January 2023 (has links)
You do not want your drone to crash. Therefore, safety systems should be put in place to prevent such an event, and obstacle avoidance is a major part of this. Today, the most successful techniques use cameras or light detection and ranging (LIDAR) to find and avoid obstacles; but to improve resiliency, multiple systems should be used. This thesis proposes to use microphones, listening to the drone’s own noise, to estimate the distance to surrounding obstacles. An obstacle echolocation solution for multi-rotor aerial vehicles (MAVs) using ego-noise is developed. The MAV’s noise is captured and auto-correlated to detect echoes at different time delays. This signal is whitened to remove structured measurement noise resulting from the narrow-band components of the MAV’s noise. By recording the MAV’s noise using multiple microphones, a time of arrival (TOA) estimate of the obstacle position is achieved. A beamforming-based solution is used to calculate this estimate. A series of simplified proof-of-concept experiments show that ego-noise echolocation is possible and that the developed solution works in a controlled environment. A prototype implementation of a realistic system is also created. Four signal fusion alternatives are compared, though no best alternative is found for all situations. More work is needed to apply the findings of this work in a robust way, but the principle is shown to work.

Page generated in 0.0629 seconds