• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 6
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 19
  • 18
  • 14
  • 13
  • 13
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Oxidation of Disinfection Byproducts and Algae-related Odorants by UV/H₂O₂

Jo, Chang Hyun 24 September 2008 (has links)
This research involved an investigation of the application and reaction mechanisms of UV/H₂O₂ for the simultaneous removal of regulated halogenated disinfection byproducts (DBPs) and odorous aldehydic algal byproducts in the presence of geosmin and 2-methylisoborneol, which are earthy-musty odorants that commonly occur in drinking water. UV/H₂O₂ is an expensive advanced oxidation process that is used to successfully control geosmin and 2-methylisoborneol. The aqueous oxidation of odorous aldehydes and halogenated DPBs were compared to that of the earthy-musty odorants and the changes to the sensory properties of the drinking water were examined. Geosmin, 2-methylisoborneol, heptadienal, decadienal, and nonadienal, hexanal, and the two most prevalent classes of DBPs, trihalomethanes (THMs) and haloacetic acids (HAAs) were oxidized by UV photolysis alone and the UV/H₂O₂ process with 6 mg/L H₂O₂ and realistic ng/l to μg/L concentrations of the test compounds. The di-, and tri-brominated THMs and HAAs were substantially (80-99%) removed by direct UV photolysis mechanism at the same UV/H₂O₂ dose required for removing 95% of geosmin and 65% of 2-methylisoborneol with faster reaction rates for the more bromine substituted compounds. The C-Br bond cleavage is the first step of brominated HAAs degradation by UV photolysis, and followed by either of two second steps: reaction with oxygen producing peroxyl radical or interaction with water molecule causing O-H insertion/H-Br elimination. Trichloromethane and mono-, di-, and tri-chlorinated HAAs were not substantially removed under the same conditions used for the brominated compounds. The principal removal mechanism was by the reaction with hydroxyl radical for the UV/H₂O₂ process. The second order reaction rate constants were on the order of 10⁶ - 10⁸ M⁻¹ s⁻¹ with faster reaction rates for the less chlorine substituted compounds. Based on the reaction rates, hydrogen and halogen ion balance, and isotope effect, both hydrogen abstraction and electron transfer reaction were involved in the first steps of the chlorinated HAA degradation. Three odorous aldehydes - heptadienal, decadienal, and nonadienal - were removed faster than geosmin or 2-methylisoborneol, and direct UV photolysis was the principal reaction mechanism for the removal of these unsaturated aldehydes. Hexanal was poorly removed. In sensory tests, new odors such as sweet or chalky odors were produced while the concentration and initial odor intensity of these fishy/grassy-smelling aldehydes were reduced with increasing exposure time to UV/H₂O₂. Carbonyl compounds were detected as products of the UV photolysis of nonadienal. These carbonyls were not removed by further UV irradiation, which was thought to be partially related with production of new odors. The results indicate that the UV/H₂O₂ is effective to control both odorous compounds and brominated DBPs. This process can be seasonally applied to control both contaminants especially, in the warm summer when both odorants and DBPs have their higher concentrations. Removal of brominated DBPs can be a significant addition to water utilities that have difficulty in meeting regulatory levels for these highly toxic compounds. The result on the removal of odorous aldehydes indicate that new types of odors were produced from the oxidation of odorous aldehydes suggesting sensory test coupled with chemical analysis should be considered in designing oxidation process to control recalcitrant odorants. / Ph. D.
12

Molecular and functional anatomy of the mouse olfactory epithelium

Vedin, Viktoria January 2006 (has links)
The olfactory system is important for social behaviors, feeding and avoiding predators. Detection of odorous molecules is made by odorant receptors on specialized sensory neurons in the olfactory epithelial sheet. The olfactory sensory neurons are organized into a few regions or “zones” based on the spatially limited expression of odorant receptors. In this thesis the zonal division and functional specificity of olfactory sensory neurons have been studied in the mouse. We find that zones 2-4 show overlapping expression of odorant receptors while the border between the regions that express a zone 1 and a zone 2 odorant receptor, respectively, is sharp. This result indicates that zone 1 and zones 2-4 are inherently different from each other. In cDNA screens, aimed at finding genes whose expression correlate to the zonal expression pattern of odorant receptors, we have identified a number of signaling proteins implicated in neural-tissue organogenesis in other systems. The differential expression pattern of identified genes suggests that regional organization is maintained during the continuous neurogenesis in the olfactory epithelium as a result of counter gradients of positional information. We show that the gene c-fos is induced in olfactory sensory neurons as a result of cell activation by odorant exposure. A zonal and scattered distribution of c-Fos-positive neurons resembled the pattern of odorant receptor expression and a change of odorant results in a switch in which zone that is activated. Whereas earlier studies suggest that the odorant receptors are relatively broadly tuned with regard to ligand specificity, the restricted patterns of c-Fos induction suggests that low concentrations of odorous molecules activate only one or a few ORs. Studies on olfactory detection abilities of mice with zonal-restricted lesions in the olfactory epithelium show that loss of a zone has severe effects on the detection of some odorants but not others. These findings lend support to a hypothesis that odorant receptors are tuned to more limited numbers of odorants. Regional differences in gene expression and differences in response to toxic compounds between the zones indicate that there may be differences in tissue homeostasis within the epithelium. We have found that there are differences in proliferation and survival of olfactory sensory neurons in regions correlating to receptor expression zones. Identified differences with regard to gene expression, tissue homeostasis and odorant detection show that the olfactory epithelium is divided into regions that transduce different stimulus features.
13

Les enzymes chimiosensorielles : de nouvelles cibles pour perturber l'olfaction des insectes nuisibles ? / Insect chemosensory enzymes as new targets to disturb insect pestolfaction? A case study in Drosophila.

Steiner, Claudia 17 October 2017 (has links)
De nombreux insectes s’avèrent être des ravageurs de culture, pouvant de surcroît transmettre des pathogènes aux plantes et ainsi causer des dégâts d’importance économique notables. Leur contrôle repose essentiellement sur l’utilisation d’insecticides, mais cela pose problème en termes de pollution de l’environnement, d’effets non désirés sur les espèces non-cibles, d’apparition de populations d’insectes résistants aux insecticides, sans parler de leur toxicité pour l’homme. L’olfaction joue un rôle clef dans le développement de nombreux comportements chez les insectes, comme la recherche de la plante nourricière ou du partenaire sexuel, le repérage de sites de ponte ou de prédateurs. Leurs organes olfactifs portent les sensilles sensorielles dans lesquelles se déroulent les étapes de la réception du signal : les molécules odorantes pénètrent par les pores et sont transportées à travers la lymphe sensillaire par des "odorant binding proteins" jusqu’aux récepteurs olfactifs (Ors) avec lesquels elles interagissent pour déclencher la cascade de transduction, puis le signal olfactif est inactivé. Si les interactions odeurs/ORs sont largement étudiées et élucidées, il n’en est pas de même pour le transport et l’inactivation du signal. En particulier, les "odorant-degrading enzymes" (ODEs) qui seraient impliquées dans cette dernière étape, en dégradant les molécules odorantes en métabolites inactifs, i.e. ne pouvant plus stimuler les récepteurs. Les ODEs appartiennent à diverses familles d’enzymes de biotransformation, comme les cytochromes P450s (CYPs), les carboxylestérases (CCEs), les glutathion-S-transférases (GSTs), ou les UDP-glucosyltransférases (UGTs). La plupart sont exprimées fortement dans les antennes. Peu d’entre-elles ont été caractérisées fonctionnellement, principalement par des approches in vitro, peu d’études ont été réalisées in vivo avec des approches électrophysiologiques ou comportementales. Au cours de ma thèse, nous avons caractérisé deux CCEs antennaires, l’Estérase6 (Est6) et la « Juvenile Hormone Esterase duplication » (JHEdup), chez Drosophila melanogaster, en combinant des approches transcriptomiques et fonctionnelles. Nous avons montré que ces deux estérases étaient exprimées très fortement dans les antennes et capables de métaboliser in vitro certaines odeurs alimentaires émises par les fruits mûrs. Nous avons aussi démontré que ces deux estérases étaient impliquées in vivo dans les réponses physiologiques et comportementales à ces odorants, et qu’elles s’avèrent donc être des ODEs.. Pour deux ODEs candidates, Ugt35b (UGT) et Cyp308a1 (CYPs), nous avons établi leur patron d’expression dans les antennes afin de préciser les types de sensilles impliquées, en préliminaire à des études fonctionnelles plus ciblées. Enfin, pour ugt35b, cyp308a1 et jhedup, nous avons mis en évidence une expression dans différentes structures gustatives, posant la question de leur rôle possible dans le métabolisme de molécules sapides. Les quatre enzymes antennaires présentées ici ne sont que le début d’une longue liste d’ODEs candidates identifiées lors de l’analyse du transcriptome antennaire de D. melanogaster. Ce travail participe à une meilleure compréhension des mécanismes moléculaires impliqués dans le fonctionnement du système olfactif. Du point de vue appliqué, les ODEs pourraient constituer des cibles d’intérêt (via des inhibiteurs spécifiques par exemple) pour modifier des comportements olfacto-induits, et ce dans un contexte de contrôle de populations d’insectes ravageurs plus respectueux de l’environnement. Par ailleurs, les connaissances acquises sur les ODEs chez cette espèce modèle pourraient contribuer à leur caractérisation chez d’autres espèces, en particulier des ravageurs de cultures. / Insects can be hazardous crop pests that do not only feed on crops but also transmit plant pathogens, causing yearly a great economical damage. Pest control relies mainly on insecticides but an extensive use bears problems such as the pollution of environment, unpredictable effects on non-target species, an increase of insecticide resistant populations and toxicity for humans. Olfaction is fundamental for the implementation of many insect behaviours like host plant and mating partner foraging, identification of suitable oviposition sites and predator avoidance. Insects smell with hairshaped olfactory sensilla, which are located on their antennae and palps. These sensilla are the showplace of early olfactory processing involving several steps: the odor uptake through the sensillar pores and their transport through the sensillar lymph mediated by odorant binding proteins, the detection of odors by olfactory receptors (ORs) and eventually the inactivation of the olfactory signal. Odor/OR interactions have been intensely studied, contrary to odor transport and inactivation that remain not well understood. Odorant-degrading enzymes (ODEs) have been suggested to be responsible for odor inactivation by degrading odorants into inactive metabolites which no longer activate ORs. The ODEs identified to date belong to various biotransformation enzyme families, including cytochrome P450s (CYPs), carboxylesterases (CCEs), glutathione-S-transferases (GSTs), UDP-glucosyltransferases (UGTs). Most of them are highly expressed in insect antennae. To date, only some ODEs have been functionally characterized, most of them in vitro using recombinant protein and showing their ability to efficiently metabolize various odorant molecules. Only a very few studies were investigating ODE function in vivo using electrophysiological and behavioural approaches. In this thesis we functionally characterize two antennal CCEs, Esterase6 (Est6) and Juvenile Hormone Esterase duplication (JHEdup), in the insect model Drosophila melanogaster combining transcriptomic, in vitro and in vivo approaches. We found that both CCEs are highly expressed in antennae and are able to efficiently metabolize certain odors emitted by rotting fruits in vitro. Furthermore, we showed that both are involved in physiological and behavioural responses to these odors. Therefore we propose Est6 and JHEdup as sensillar candidate ODEs. Moreover, we investigated the precise antennal gene expression pattern in toto for two antennal biotransformation enzymes belonging to other classes, Ugt35b (UGT) and Cyp308a1 (CYPs), which will be helpful for further investigations in order to clarify their potential role in olfaction. In case of three ODE candidate genes (ugt35b, cyp308a1 and jhedup) we discovered an interesting expression pattern in various gustatory organs posing new questions about additional functions of these antennal enzymes in taste processing. The antennal enzymes discussed in this thesis are only four of many candidate ODEs that we identified in the antennal transcriptome of the fruit fly. These candidates comprise also enzymes that belong to other classes such as GSTs, aldehyde oxidases, alcohol dehydrogenases or lipases. This work contributes to a deeper understanding of the insect olfactory system including its molecular actors. From an applied point of view ODEs are interesting targets to modify odorant-driven insect behaviours. The identification of specific ODE inhibitors that could interfere with insect ability to respond to environmental olfactory cues, emitted by mating partners or host plants, would contribute to a broader variety of “eco-friendly” olfactory-based insect pest control strategies. In the future the obtained knowledge in the insect model Drosophila will contribute to the characterization of ODEs in different hazardous insect pests which will be the next step to develop new inhibitor-based strategies.
14

Modelagem comparativa e triagem virtual hier?rquica para identifica??o de moduladores das OBPs de Lutzomyia Longipalpis

Santana, Isis Bugia 11 March 2016 (has links)
Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2017-02-14T00:41:33Z No. of bitstreams: 1 PPGBiotec - Disserta??o corrigida - Isis Bugia.pdf: 6811384 bytes, checksum: 2380cbb790d35324858de90e106415fc (MD5) / Made available in DSpace on 2017-02-14T00:41:33Z (GMT). No. of bitstreams: 1 PPGBiotec - Disserta??o corrigida - Isis Bugia.pdf: 6811384 bytes, checksum: 2380cbb790d35324858de90e106415fc (MD5) Previous issue date: 2016-03-11 / The Visceral Leishmaniasis (VL) is the second most important vector-borne disease in the world, transmitted in the Americas by Lutzomyia longipalpis, vector control is essential for the prevention of the disease. But since it is not possible to identify the oviposition sites, the fight is directed to adult insects, using traps impregnated with chemical attractants. Whereas the Odorant Binding Proteins (OBPs) act in the first level of odor selection, this work used in silico methodology to identify putative vector olfactory chemical modulators based on the structure of OBPs and known ligands. For this, tridimensional (3D) structure of L. longipalpis OBPs were predicted by three comparative modeling methods. The best model, predicted by I-Tasser, was refined by Molecular Dynamics on Gromacs. Then, in a hierarchical virtual screening approach, natural compounds of ZINC12 closer to the typical OBP ligands in global chemical space, provided by ChemGPS-NP, were evaluated and staggered concerning affinity with the orthosteric site from the OBP, by molecular docking on DOCK6. The compounds were scored by GRIDSCORE, then the 100 best classified were submitted to AMBERSCORE, which took into account the flexibility from both OBP and the docked ligands. The lowest energy conformations interacted with a hydrophobic pocket through residues Met6, Gly10, Glu11, Ala9 Arg14, Leu74, Met53, Phe118, Phe119, Pro120, amino groups and formed ionic interaction with carboxyl of Glu11, Furthermore, Phe119, Asn29 and Gln69 formed hydrogen bonds, this last formed donor and acceptor H-bonds. / A Leishmaniose Visceral (LV) ? a segunda doen?a vetorial mais importante do mundo, transmitida nas Am?ricas por Lutzomyia longipalpis, o controle do vetor ? indispens?vel ? preven??o da doen?a. Mas como n?o ? poss?vel identificar onde ocorre a oviposi??o, o combate ? direcionado aos insetos adultos, utilizando armadilhas impregnadas com atrativos qu?micos. Considerando que as Prote?nas Ligadoras de Odor (OBPs) atuam no primeiro n?vel de sele??o dos odores, este trabalho utilizou uma metodologia in silico para identificar potenciais moduladores qu?micos olfativos do vetor baseando-se na estrutura das OBPs e de ligantes conhecidos. Para isso, foram preditas as estruturas tridimensionais (3D) de OBPs de L. longipalpis por tr?s m?todos de modelagem comparativa. O melhor modelo, predito pelo I-Tasser, foi refinado por Din?mica Molecular no Gromacs. Ent?o, numa abordagem hier?rquica da triagem virtual, os compostos naturais do ZINC12 mais pr?ximos dos t?picos ligantes de OBPs no espa?o qu?mico global, fornecido pelo ChemGPS-NP, foram avaliados e escalonados quanto ? afinidade com o s?tio ortost?rico da OBP, pelo acoplamento molecular no DOCK6. Os compostos foram pontuados pelo Gridscore, em seguida, os cem melhores classificados foram submetidos ? pontua??o pelo Amberscore, que levou em conta a flexibilidade tanto da OBP como dos ligantes acoplados. As conforma??es de menor energia interagiram com um bols?o hidrof?bico atrav?s dos res?duos Met6, Ala9, Gly10, Glu11, Arg14, Met53, Leu74, Phe118, Phe119, Pro120; grupamentos amino formaram pontes salinas com a carboxila do Glu11. Al?m disso, os res?duos Phe119, Asn29 e Gln69 formaram liga??es hidrog?nio, sendo que, este ?ltimo res?duo formou liga??es-H aceptoras e doadoras.
15

ROLES OF EMX2 IN ODORANT RECEPTOR GENE EXPRESSION AND OLFACTORY SENSORY NEURON AXON GROWTH

McIntyre, Jeremy Colin 01 January 2009 (has links)
The sense of smell relies upon the detection of odorants by neurons located in the nasal cavity. These neurons, referred to as olfactory sensory neurons (OSNs), line the olfactory epithelium and extend axons that make synaptic connections with mitral/tufted cells in the olfactory bulb. The mechanisms by which these synaptic connections form remain largely unknown. The development of these synaptic connections relies on the axons of immature OSNs innervating the olfactory bulb. The primary goal of this dissertation was to identify components of the mechanisms used by immature OSN axons to innervate the olfactory bulb. To accomplish this goal, a knockout mouse model was used. OSN axons, of Emx2 knockout mice fail to innervate the olfactory bulb. As EMX2 is a transcription factor, this model was used investigate the possible causes of the defective OSN axon growth. To gain a better understanding of OSN axon growth, differences in expression of axon growth and guidance genes in immature and mature OSNs was investigated. This analysis revealed that many axon growth and guidance genes are differential expressed, and helped to identify immature OSN specific genes. The data also revealed a previously unrecognized developmental stage, termed nascent OSNs, identified by the expression of Cxcr4. Analysis of Emx2-/- mice revealed that EMX2 is necessary for OSN survival, odorant receptor expression and expression of the axonogenesis related gene Ablim1. EMX2 is necessary for the expression of many odorant receptor genes; however the loss of odorant receptor expression does not explain the axon growth defects. Apoptosis is increased in Emx2-/- mice, an outcome that may be due to the failed axon growth. Analysis of axon guidance gene expression identified a large reduction in Ablim1 expression in Emx2-/- mice. Ablim1 is expressed by immature OSNs, placing it in the proper cell type to regulate OSN axon growth. The loss of Ablim1 expression in Emx2-/- mice indicates defective signaling in the axon growth cone and a possible mechanism regulating OSN axon growth into the olfactory bulb. The data presented in this dissertation provide new insight into the regulation of odorant receptor gene expression and OSN axon growth.
16

Investigation of Age Related Differences in the Rewiring of P2-Olfactory Receptor Neurons

Galante, Daniel Joseph 01 January 2007 (has links)
Olfactory receptor neurons (ORNs) maintain the ability to regenerate. These neurons reside in the olfactory epithelium and project axons that connect to the olfactory bulbs. Despite the diffuse distribution of ORNs in the olfactory epithelium, they converge at discrete glomeruli in the olfactory bulb. In the P2 IRES tau-lacZ mouse, the P2 ORN subtype has been previously mapped to two glomeruli, using X-gal staining. To determine if age affects ORN regeneration, left olfactory nerve transections were performed on P2 mice from immature (five-weeks old) and mature (1 6-weeks old) groups. Following recovery, the olfactory bulbs were processed to observe ORN regeneration. A significant difference was seen in the number and mapping of full P2 glomeruli between lesioned and control olfactory bulbs, but not between the age groups. This suggests that age differences between the two groups in this study were not large enough to affect the regeneration of P2 ORNs.
17

Identificação e caracterização de proteínas ligantes de odorantes de Rhodnius prolixus / Characterization and identification of odorant binding proteins of Rhodnius prolixus

Sampaio, Renata Porto 23 May 2018 (has links)
Embora os insetos sejam essenciais para a vida na Terra, alguns afetam negativamente a sociedade humana atuando como vetores de doenças, como por exemplo a doença de Chagas. De acordo com a Organização Mundial de Saúde, no Brasil, o método mais eficaz para prevenir a propagação do agente etiológico, Trypanosoma cruzi, é por controle vetorial. Rhodnius prolixus é um importante vetor de doença de Chagas no Brasil. Como outros insetos, seu comportamento depende de semioquímicos percebidos por um sistema olfativo sofisticado. As proteínas que realizam a comunicação entre ambiente externo e os receptores de odorantes são chamadas de proteínas ligadoras ao odorante (Odorant Binding Protein, OBPs), e são proteínas solúveis, extracelulares e pequenas (15-17 kDa). Visando aumentar o conhecimento sobre essas proteínas para possivelmente desenvolver estratégias de manipulação comportamental de R. prolixus, foram selecionados três genes putativos de OBPs, RproOBP 8, 11 e 19. Os genes foram selecionados através de ferramentas de bioinformática e foram clonados e expressos em diferentes vetores linhagens celulares de Escherichia coli. A proteína recombinante RproOBP 8 e 11 foram expressas em E. coli BL21(DE3). A RproOBP 19 obteve os melhores resultados quando expressa em E. coli BL21(DE3)pLysS. As proteínas recombinantes foram estudadas usando Espalhamento Dinâmico da Luz (DLS), cujos resultados sugeriram melhores soluções tamponantes para trabalhar e armazenar essas proteínas. Esses tampões também foram utilizados para rastrear as condições de cristalização. Embora não tenham sido obtidos cristais para serem usados em coleta de dados de difração de raios X, algumas condições se mostraram promissoras para serem refinadas posteriormente. A RproOBP11 apresentou uma cor vermelha quando purificada. O espectro de UV-Visível mostra um máximo de absorção em 413 nm, o que sugere a presença de um grupo heme no estado oxidado. Os espectros obtidos por Dicroísmo Circular (CD) para a RproOBP11, caracterizam uma proteína rica em α- hélice devido aos picos negativos em 208 e 222 nm. Na presença de 5 possíveis ligantes: pentanol, hexanol, heptanol, octenol e octanol, os espectros de CD não mostraram mudança, podendo representar falta de interação ou interações fracas. A Calorimetria de Titulação Isotérmica (ITC) foi realizada com os mesmos compostos, nenhum deles mostrou interação com a RproOBP11 em tampão 20 mM fosfato pH 7,0. Os mesmos resultados de ITC foram obtidos para o RproOBP19 em tampão 20 mM HEPES pH 7,0. Os resultados do CD sugerirem que o RproOBP19 é uma proteína com regiões intrinsecamente desordenadas. Quando os espectros de CD foram obtidos na presença de TFE a RproOBP19 apresenta espectro mais semelhante às proteínas de α- hélice. Estes resultados representam a primeira investigação molecular de OBPs de R. prolixus. Testes adicionais são necessários para descobrir a estrutura e função dessas OBPs e assim, realizar uma abordagem direcionada do controle vetorial e a possibilidade de usar essas pequenas proteínas como ferramentas biotecnológicas. / Although insects are essential to life on earth, some can affect negatively human society acting as vectors of diseases. One of those is Chagas disease. According to the World Health Organization, in Brazil the most effective method to prevent the spread of the etiologic agent, Trypanosoma cruzi, is by vector control. Rhodnius prolixus is important Chagas disease vector in Brazil. It is a blood-feeding triatomine whose behavior, like other insects, originally depends of signals given by the environment as semiochemicals perceived by a sophisticated olfactory system. The proteins that perform the communication between external environment and the odorant receptors are called Odorant Binding Proteins (OBPs), and are soluble, extracellular and small proteins (15-17 kDa). Aiming to increase knowledge about these proteins to possibly develop strategies for behavioral manipulation of R. prolixus , three putative OBP genes, RproOBP 8, 11 and 19, were selected. The genes were selected using bioinformatics tools and were cloned and expressed in different vectors of Escherichia coli cell lines. Recombinant protein RproOBP 8 and 11 were expressed in E. coli BL21(DE3). RproOBP 19 obtained the best results when expressed in E. coli BL21(DE3)pLysS. Recombinant proteins were studied using Dynamic Light Scattering (DLS), whose results suggested better buffering solutions for working and storing conditions. Such buffers were also used to track crystallization conditions. Although no crystals have been obtained for use in X-ray diffraction data collection, some conditions have proved promising for further refinement. RproOBP 11 showed a red color when purified. The UV-Visible spectrum shows a maximum absorption at 413 nm, which suggests the presence of a heme group in the oxidized state. The spectra obtained by Circular Dicroism (CD) for RproOBP11, characterize an α-helix rich protein due to negative peaks at 208 and 222 nm. In the presence of 5 possible ligands: pentanol, hexanol, heptanol, octenol and octanol, the CD spectra did not show change, being able to represent lack of interaction or weak interactions. Isothermal Titration Calorimetry (ITC) was performed with the same compounds, none of them showed interaction with RproOBP 11 in 20 mM phosphate buffer pH 7.0. The same ITC results were obtained for RproOBP19 in 20 mM HEPES buffer pH 7.0. CD results suggest that RproOBP19 is a protein with intrinsically disordered regions. When CD spectra were obtained in the presence of TFE RproOBP19 presents a spectrum more similar to the α-helix proteins. These results represent the first molecular investigation of OBPs of R. prolixus. Further tests are needed to uncover the structure of these OBPs and provide insight into the function allowing a more targeted approach of vector control and the possibility to use such small proteins as biotechnological tools.
18

Cellular and Synaptic Organization of the Human Olfactory Bulb

Maresh, Alison 04 March 2008 (has links)
The distribution of cell types and synapses is well characterized in the rodent olfactory bulb (OB), and from that plausible models of odor processing have been constructed. Individual olfactory sensory neurons (OSNs) express only 1 of ~1000 odorant receptors (ORs) and send their axons to specific synaptic targets in the OB glomerular neuropil. Each glomerulus is innervated exclusively by OSN axons expressing the same OR. The distribution of these glomeruli is conserved across animals, as is the numerical relationship between number of expressed ORs and number of glomeruli in the OB. Our objective is to extend such results to the level of the human OB to determine how its cellular and synaptic organization, and more specifically how the number and distribution of its glomeruli, compare to what has been elucidated in mice. As there are ~2,000 glomeruli for ~1,000 ORs in mice, we predicted ~700 glomeruli in humans based on the ~350 intact OR genes identified in the human through genomic studies. Using immunohistochemistry, the organization of cells and synapses in human OBs was evaluated and quantified. While the laminar structure of the OB is broadly conserved between species, in the human OB the laminar organization as well as additional structural features suggest a less rigorously organized OB than in rodents, perhaps suggesting that odor processing in the human OB may be less efficient than in mice. Of particular note, the total number of glomeruli in the human OB differs significantly from predicted and demonstrates a high degree of variability amongst specimens, thus far ranging from approximately 3000 - 9000/OB. These results indicate that the principles of OR-homotypic axon convergence developed from mouse studies may not be readily applicable to the human, and that central processing of odor signals in the human may differ from those characterized in the mouse.
19

Evolutionary genomics of odorant receptors: identification and characterization of orthologs in an echinoderm, a cephalochordate and a cnidarian.

Churcher, Allison Mary 17 August 2011 (has links)
Animal chemosensation involves several families of G protein-coupled receptors (GPCRs) and, though some of these families are well characterized in vertebrates and nematode worms, receptors have not been identified for most metazoan lineages. In this dissertation, I use a combination of bioinformatics approaches to identify candidate chemosensory receptors in three invertebrates that occupy key positions in the metazoan phylogeny. In the sea urchin Strongylocentrotus purpuratus, I uncovered 192 candidate chemosensory receptors many of which are expressed in sensory structures including pedicellariae and tube feet. In the cephalochordate Branchiostoma floridae, my survey uncovered 50 full-length and 11 partial odorant receptors (OR). No ORs were identified in the urochordate Ciona intestinalis. By exposing conserved amino acid motifs and testing the ability of those motifs to discriminate between ORs and non-OR GPCRs, I identified three OR-specific amino acid motifs that are common in cephalochordate, fish and mammalian ORs and are found in less than 1% of non-ORs from the rhodopsin-like GPCR family. To further investigate the antiquity of vertebrate ORs, I used the OR-specific motifs as probes to search for orthologs among the protein predictions from 12 invertebrates. My search uncovered a novel group of genes in the cnidarian Nematostella vectensis. Phylogenetic analysis that included representatives from the major subgroups of rhodopsin-like GPCRs showed that the cnidarian genes, the cephalochordate and vertebrate ORs, and a subset of genes S. purpuratus from my initial survey, form a monophyletic clade. The taxonomic distribution of these genes indicates that the formation of this clade began at least 700 million years ago, prior to the divergence of cnidarians and bilaterians. Furthermore, my phylogenetic analyses show that three of the four major subgroups of rhodopsin-like GPCRs existed in the ancestor of cnidarians and bilaterians. The utility of the new genes I describe here is that they can be used to identify candidate olfactory cells and organs in cnidarians, echinoderms and cephalochordates that can be tested for function. These genes also provide the raw material for surveys of other metazoans as their genomes become available. My sequence level comparison between chordates, echinoderms and cnidarians exposed several conserved amino acid positions that may be useful for understanding receptor mediated signal transduction. ORs and other rhodopsin-like GPCRs have roles in cell migration, axon guidance and neurite growth; therefore duplication and divergence in the rhodopsin-like gene family may have played a key role in the evolution of cell type diversity (including the emergence of complex nervous systems) and in the evolution of metazoan body plan diversity. / Graduate
20

Regulation of adenylyl cyclases by CaM kinases : a possible role during signal desensitization in olfaction /

Wei, Jia. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [115]-133).

Page generated in 0.0679 seconds