Spelling suggestions: "subject:"enology"" "subject:"fenology""
51 |
Effect of Vine Age and Selected Winemaking Techniques on the Sensory Profile of Central Coast Red WinesLomonaco, Isabelle 01 June 2022 (has links) (PDF)
Descriptive sensory analysis is essential to understanding how differing varietals, viticultural techniques, enological techniques, vintage, regions, etc. impact the sensory characteristics found in wines. These studies analyzed the sensory impacts of vine age, whole cluster and stem addition influences, the frequency of cap management regimes, and selected fermentation variables, on 2019 Zinfandel, 2020 Syrah, 2020 Tannat, 2020 Cabernet Sauvignon, and 2021 Graciano wines respectively, from the Central Coast of California, USA. The investigation of Old vine Zinfandel indicated that these wines were defined as complex due to the wide variety of descriptors used to characterize them, having high color saturation and long length, while the Young vine wines were described as considerably less aromatically diverse, yet being defined by high intensity wet topsoil and pomegranate aromas. Acknowledging the absence of literature on classifying Californian Tannat, descriptors such as high color saturation, purple hue, cooked blue fruit, violet, raisin, bitterness, and astringency may serve as descriptors to these uncommon wines. Regarding stem addition, Dried stem wines exhibited the highest color saturation, purple hue, and astringency intensities in both the Syrah and Tannat wines. Generally, the Green stem wines were less lifted, however the presence of stems added a sense of freshness. The Whole cluster and Control wines generally opposed each other. With reference to cap management, as punch down (PD) increased, perceptions of the overall astringency, bitterness, and velvety characteristics increased. Concerning the various fermentation variables, dirty (unwashed grapes prior to fermentation) wines were described by the earthy aroma, washed (washed grapes prior to fermentation) wines by the floral aroma, and spontaneous (uninoculated) wines by the fruity aromas; however, fruity was the predominant aroma across most wines.
|
52 |
Cofermentation, Post-Alcoholic, And Post-Malolactic Fermentation Blending Of Malbec, Merlot And Petite Sirah WinesVega-Osorno, Armando Arturo 01 September 2022 (has links) (PDF)
A two-year study was conducted to assess the effects of cofermentation on red wine varietals. During the winemaking process, wines can be made from two or more varieties by picking, crushing and fermenting them together, a practice known as cofermentation. They can also be blended either after the completion of alcoholic fermentation or after malolactic fermentation. In the first year of the study, two grape varieties, Merlot (Mer), and Malbec (Mal) were cofermented. On the second year, a third varietal, Petite Sirah (PS) was also studied. Cofermented wines containing every possible binomial combination of the varietals was made and one trinomial on 2019. The cofermented wines were compared to monovarietal wines and also to wines that were produced by blending either after alcoholic fermentation or after malolactic fermentation. The phenolic profile of the wines was followed from the onset of fermentation up to 36 months of bottle aging for the 2018 vintage and in the case of the 2019 vintage, up until 250 days after crushing. In 2018, cofermented wines and wines that were blended after malolactic fermentation had an anthocyanin profile that was more similar to Malbec than to Merlot, while the tannin profile was more resemblant of Merlot. In 2019 cofermentation improved the anthocyanin content when compared to post alcoholic and post malolactic blend only when the three varietals were cofermented. A sensory analysis with 10 trained individuals was conducted on the 2018 vintage. It was demonstrated that Malbec wines had a higher amount of red fruit aromas while Merlot wines were perceived as being more astringent. Cofermented and post malolactic fermentation blended wines were indistinguishable to panelists and blending after alcoholic fermentation produced wines that highlighted the individual varietal character.
|
53 |
The ecophysiological characterisation of terroirs in Stellenbosch : the contribution of soil surface colourWitbooi, Erna Hailey 03 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology))--Stellenbosch University, 2008. / Soil is a component of the environment and sustains growth of several plants and animals.
It forms part of the biosphere and can be described as the interface between the
atmosphere and the lithosphere. The interaction between soil, climate and topography and
the resulting agricultural aptitude forms the concept of terroir. This relationship is complex
and it is difficult to quantify the contribution of each.
Grapevines are exposed to an array of soil types. Soils have varying colours, which can be
ascribed to their origin from different parent materials and pedogenetic factors. Historical
and experimental evidence points to the key role that soil physical conditions play in
determining grape berry composition, but other soil related factors may also play a role.
This study was conducted to investigate the effect of soil surface colour on the vegetative
and reproductive growth characteristics of Cabernet Sauvignon. The aim was to determine
whether a relationship exists between soil colour, reflective light quality below and inside
the grapevine canopy, vegetative growth of the grapevine and the berry and wine
composition.
The reflected light from soils was measured in three positions of the canopy and across
the light spectrum (300–2500 nm) for three different soil surface treatments (black, red and
grey). The effect of soil colour on vegetative parameters, yield and berry composition and
wine quality was investigated. Soil surface colour resulted in differences in the reflected
light quality below and in the canopy. The differences in the light quality were associated
with differences in vegetative parameters such as mean main leaf, with grey soils inducing
higher values. Potassium levels of the grapes and berry number per bunch appeared to be
influenced by soil surface colour throughout berry development with red and black soils
having higher levels of potassium and berry number per bunch than grey soils. Grape
ripening parameters were not influenced by soil surface colour, but the grey treatment had
a significantly more intense grape colour measured at 520 nm (red pigments).
It is assumed that the importance of soil colour is its association with the physical and the
pedogenetic properties that contribute to the grapevine water balance. From these results it can be concluded that soil surface colour appeared to have a direct effect on some
aspects of vegetative and reproductive growth, and berry composition, but the contribution
of different wavebands and mechanism of their effect deserves further study.
|
54 |
Chemical characterisation of South African young winesLouw, Leanie 12 1900 (has links)
Thesis (MscAgric (Viticulture and Oenology))--University of Stellenbosch, 2007. / The rapid expansion of the world wine industry has increased the pressure on wine producers to
produce high quality, distinguishable wines. The use of sensory evaluation alone as a tool to
distinguish between wines is limited by its subjective nature. Chemical characterisation using
analytical methods and data analysis techniques are increasingly being used in conjunction with
sensory analysis for comprehensive profiling of wine. Analytical chemistry and chemometric
techniques are important and inextricable parts of the chemical characterisation of wine. Through
this process insight into the inherent composition of wines, be it in a general sense or related to a
particular wine category is gained. Data generated during chemical characterisation are typically
compiled into electronic databases. The application of such information towards wine quality
control includes the establishment of industry benchmarks and authentication.
The current project is part of The South African Young Wine Aroma Project, a long term
research initiative funded by the South African Wine Industry with the ultimate aim to establish a
comprehensive, up-to-date, database of the volatile composition of young wines. The data
generated during this thesis represent the first contribution towards realising this ambition.
Three clearly defined aims were set for this project, the first of which is the chemical
characterisation of South African young wines in terms of selected volatile and non-volatile
compounds and Fourier transform infrared spectra, with particular focus on the volatile
composition. FTMIR spectra are information rich and non-specific instrumental signals that could
provide invaluable information of the inherent composition of the wines. The second aim is the
evaluation of the analytical methods used to generate the data and in the last instance, the
optimisation of FTMIR spectroscopy for rapid quantification of major wine parameters and volatile
compounds.
The concentrations of 27 volatile compounds in South African young wines were determined
by gas chromatography coupled to flame ionisation detection (GC-FID) using liquid-liquid
extraction of the analytes. Wine samples of the 2005 and 2006 vintages produced from six of the
most important cultivars in the South African wine industry, namely Sauvignon blanc, Chardonnay,
Pinotage, Cabernet Sauvignon, Merlot and Shiraz were used. The producing cellars were from four
major South African wine producing regions, namely Stellenbosch, Paarl, Robertson and
Worcester. The data captured made a significant contribution to the establishment of the Aroma
Project Database. Univariate statistics showed wide variations in the chemical composition of the
wines. Red wines were generally characterised by high levels of higher alcohols and white wines
by high levels of esters. Most of the differences between vintages were cultivar dependent and
phenological differences between cultivars were suggested as a possible cause. Fusel alcohols,
iso-acids and esters of fusel alcohols were particularly responsible for differences between red
wines. A combination of fatty acids and higher alcohols were responsible for differences between
production regions. However, using univariate statistics alone was limited in identifying
characteristic features of the chemical composition of the wines. In order to explore the correlations between the volatile components, FTMIR spectra and nonvolatile
components the data were further investigated with multivariate data analysis. Principal
component analysis was successfully employed to distinguish between wines of different vintages
and cultivars. The role of the volatile composition was more influential in the separation of vintage
and red wine cultivar groupings than the non-volatile components or the FTMIR spectra. Almost all
the individual volatile components contributed to the separation between the vintages and cultivars,
thereby highlighting the multivariate nature required to establish the distinguishing features
pertaining to each of these categories. The FTMIR spectra and the non-volatile components were
more important than the volatile components to characterise the differences between the white
cultivars. It was not surprising that both the volatile components and the FTMIR spectra were
needed to distinguish between both red and white cultivars simultaneously. It was of interest the
full spectrum, including all wavenumbers were required for a powerful classification model. This
finding supports the initial expectation that the non-selective but information rich signal captured in
the FTMIR spectra is indispensable. No distinction could be made between the production regions,
which was not surprising since the wines used in this study was not of guaranteed origin.
Furthermore, no clear correlation could be established between the chemical composition or the
FTMIR spectra and the quality ratings of the wines. Limitations in the dataset were pointed out that
must be taken into account during further investigations in the future.
The liquid-liquid extraction method used during the analysis of the volatile components was
evaluated for precision, accuracy and robustness. Generally good precision and accuracy were
observed. There were slight indications of inconsistencies in the recoveries of analytes between
the red and white wine matrices. Certain parameters of the protocol, namely sample volume,
solvent volume, sonication temperature and sonication time, were identified as factors that had a
major influence on quantification. The results obtained in this study made a major contribution
towards establishing this technique for routine GC-FID analysis in our environment.
Due to the high sample throughput in wine laboratories, the use of rapid quantitative analytical
methods such as FTMIR spectroscopy is becoming increasingly important. Enzymatic-linked
spectrophotometric assays and high performance liquid chromatography (HPLC) methods were
evaluated for their suitability to serve as reference methods for optimising and establishing FTMIR
calibrations for glucose, fructose, malic acid, lactic acid and glycerol. Pigmented and phenolic
compounds were identified as sources of interference in the determination of organic acids in red
wines with both enzymatic assays and HPLC. The use of fining treatments for the decolourisation
of red wine samples was investigated. Activated charcoal was more efficient in terms of colour
removal than polyvinyl polypyrrolidone (PVPP), but neither were compatible with the specific
enzymatic method used in this study. Solid phase extraction (SPE), a method commonly used
during sample clean-up prior to HPLC analysis of organic acids in wine, and PVPP fining were
evaluated as sample preparation methods for HPLC analysis to optimise the quantification of
organic acids in red wine. Four different types of SPE cartridges were evaluated and the SPE
method was optimised in order to recover the maximum amount of organic acids. However, low
recoveries, in some instance less than 50%, for the organic acids in wine were reported for the
optimised SPE method. In this respect one was the worst. On average, excellent recoveries were observed for the organic acids using the PVPP method that were in excess of 90%. This method
therefore provides a very valuable and simple alternative to SPE for sample-cleanup prior to HPLC
analysis. One aspect that still needs to be investigated is the reproducibility of the method that
should still be optimised. In general, enzymatic analysis was more suitable for the determination of
glucose and fructose, while HPLC analysis were more suitable for the quantification of organic
acids. Efficient glycerol quantification was observed with both enzymatic and HPLC analysis,
although a lower measurement error was observed during the HPLC analysis.
Apart from reliable reference methods, successful FTMIR calibrations also rely on the
variability present in the reference sample set. The reference sample set used to establish FTMIR
calibrations must ideally be representative of the samples that will be analysed in the future.
Commercial, or so-called global, FTMIR calibrations for the determination of important wine
parameters were evaluated for their compatibility to a South African young wine matrix. The
prediction pH, titratable acidity, malic acid, glucose, fructose, ethanol and glycerol could be
improved by establishing a brand new FTMIR calibration, thereby clearly indicating that the South
African young wine matrices were significantly different from the samples of European origin that
were used to establish the commercial calibrations. New preliminary calibration models were
established for a young wine sample matrix and were validated using independent test sets. On
average the prediction errors were considered sufficient for at least screening purposes. The effect
of wavenumber selection was evaluated. Relatively successful models could be established for all
the compounds except glucose. Wavenumber selection had an influence on the efficiency of the
calibration models. Some models were more effective using a small amount of highly correlated
wavenumbers, while others were more effective using larger wavenumber regions.
Preliminary FTMIR calibration models for the screening of volatile compound groups in young
wines were evaluated. Compound groups were compiled based on chemical similarity and flavour
similarity. Good linearity were observed for the “total alcohol”, “total fatty acids”, “esters” models
while an interesting polynomial trend was observed for the “total esters” model. Relatively high
prediction errors indicated the possibility of spectral interferences, but the models were
nevertheless considered suitable for screening purposes. These findings are a valuable
contribution to our environment where fermentation flavour profiles must often be examined.
The important role sound and validated analytical methods to generate high quality analytical
data, and the subsequent application of chemometric techniques to model the data for the purpose
of wine characterisation has been thoroughly explored in this study. After a critical evaluation of the
analytical methods used in this study, various statistical methods were used to uncover the
chemical composition of South African young wines. The use of multivariate data analysis has
revealed some limitations in the dataset and therefore it must be said that wine characterisation is
not just reliant on sophisticated analytical chemistry and advanced data analytical techniques, but
also on high quality sample sets.
|
55 |
Nutritional status of geologically different vineyards in HelderbergShange, Philisiwe Lawrancia 12 1900 (has links)
Thesis (MscAgric (Viticulture and Oenology))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Little scientific information regarding the effect of different geological parent materials on
grapevine performance is currently available in South Africa. This aspect is of special
significance for the Helderberg area, where parent material may change from granite to shale
over a short distance. This results in shale- as well as granite-derived soils often occurring
within the same vineyard. The objectives of this study were to (i) quantify the nutritional status
and other soil properties of different parent materials (shale and granite) and overlying soils (ii)
investigate the impact of geological differences in the soil on the vine nutritional status and
certain vine parameters. This study was done over two seasons (2006/2007 and 2007/2008).
Two Sauvignon blanc and two Cabernet Sauvignon vineyard blocks were selected at two
different localities for each cultivar in the Helderberg area, South Africa. Shale- and granitederived
soils were identified within each block.
Kaolinite was the dominant mineral, whereas quartz and feldspar were sub-dominant. Traces of
mica were also present in some shale- and granite-derived soils. Granite- contained significantly
higher contents of coarse sand than shale-derived soils, whilst the opposite occurred in terms of
fine sand. These differences affected the water holding capacity, in general making it higher in
shale- than granite-derived soils. Shale-derived soils had higher concentrations of total K but
granite-derived soils had a higher ability to release K as they contained higher concentrations of
soluble K. The Q/I parameters, potential buffering capacity of K (PBCK) and equilibrium activity
ratio of K (ARK) showed no consistent responses to geological differences.
Potassium concentrations were higher in the leaf blades (obtained before harvest in 2007) from
Sauvignon blanc grapevines on granite- than on shale-derived soils. Potassium concentrations
in the Cabernet Sauvignon juice (obtained in 2007) tended higher in juice from granite- than
from shale-derived soils. In 2008, K concentrations tended higher in juice from shale- than from
granite-derived soils for both cultivars. The pH of the Sauvignon blanc juice (obtained in 2008)
tended higher in juice from shale-than from granite-derived soils, thus corresponding with the K
concentrations in the juice in this season. Nitrogen concentrations were higher in Cabernet
Sauvignon juice (obtained in 2007) and Sauvignon blanc juice (obtained in 2008) from shalethan
from granite-derived soils. In terms of vine water status, vines on granite-derived soils
appeared more stressed than those on shale-derived soils in both seasons at one of the
vineyards.
In these Sauvignon blanc and Cabernet Sauvignon vineyards, the K nutritional status was not
affected by geology in a consistent manner but there were some noticeable tendencies for a
specific cultivar during certain seasons. On account of vines being planted on shale- and
granite-derived soils within the same block, soil preparation was done similarly for both soils,
and they were exposed to similar irrigation schedules, canopy management strategies and
climatic conditions. Therefore, there is a high probability that all these practices may have
negated the effect of geology on the K status of soils and especially on juice K concentration at
the time of harvest. It was clear that seasonal differences and fertilisation affected the nutritional
status of the vines more than geology. / AFRIKAANSE OPSOMMING: In Suid-Afrika is daar tans min wetenskaplike inligting oor die effek van verskillende geologiese
moedermateriale op die prestasie van wingerd beskikbaar. Hierdie aspek is veral van belang in
die Helderberg-area, waar moedermateriaal oor ‘n baie kort afstand van graniet na skalie kan
wissel. Dit lei daartoe dat skalie-, sowel as granietgronde, dikwels binne dieselfde wingerd
voorkom. Die doelwitte van die studie was om: (i) die voedingstatus en ander grondkundige
eienskappe van die verskillende moedermateriale (skalie en graniet) en oorliggende gronde te
kwantifiseer (ii) die impak van geologiese verskille in die grond op wingerd se voedingstatus en
sekere wingerdkundige parameters, te ondersoek. Hierdie studie is oor twee seisoene
(2006/2007 en 2007/2008) gedoen. Twee Sauvignon blanc en twee Cabernet Sauvignon
wingerdblokke is geselekteer by twee verskillende lokaliteite vir elke kultivar in die Helderbergarea,
Suid-Afrika. Beide skalie- en granietgrond is binne elke blok geïdentifiseer.
Kaoliniet was die dominante mineraal, met kwarts en veldspaat sub-dominant, terwyl spore van
mika ook in beide skalie- en granietgronde gevind is. Granietgronde het betekenisvol hoër
hoeveelhede growwe sand bevat, terwyl skaliegronde meer fyn sand bevat het. Hierdie verskille
het ‘n effek op waterhouvermoë gehad en daartoe gelei dat waterinhoude oor die algemeen
hoër was vir skaliegronde. Skaliegronde het groter hoeveelhede totale K bevat, maar
granietgronde se vermoë om K vry te stel was hoër, omdat hulle ‘n hoër konsentrasie oplosbare
K bevat het. Die Q/I parameters, potensiële buffervermoë vir K (PBCK) en ewewig
aktiwiteitsverhouding vir K (ARK), is nie op ‘n konsekwente wyse deur geologiese verskille
beïnvloed nie.
Vir die Sauvignon blanc wingerde was kalium konsentrasies in blaarskywe (gemonster voor oes
in 2007) hoër vir graniet- as vir skaliegronde. Kalium konsentrasies in die sap vanaf Cabernet
Sauvignon (gemonster in 2007) het hoër geneig vir granietgronde. In 2008 het die kalium
konsentrasies, vir beide kultivars, hoër geneig in sap vanaf skaliegronde. Gedurende dié
seisoen het die pH van sap ook hoër geneig vir Sauvignon blanc vanaf skaliegronde, wat dus
ooreenstem met die K inhoud van die sap. Stikstof konsentrasies was hoër in sap vanaf
skaliegronde vir Cabernet Sauvignon (2007) en vir Sauvignon blanc (2008). In terme van die
wingerde se waterstatus, het stokke op die granietgrond, by een van die lokaliteite, geneig om
gedurende beide seisoene onder groter stremming te wees op graniet as op skaliegrond.
In hierdie Sauvignon blanc en Cabernet Sauvignon wingerde, is K voedingstatus nie op ‘n
konsekwente wyse deur geologie geaffekteer nie, maar gedurende sommige seisoene was daar
wel duidelike tendense vir ‘n spesifieke kultivar. Omdat die stokke binne dieselfde blok op
skalie- en graniet gronde geplant is, was grondvoorbereiding eenders vir die twee grondtipes
terwyl besproeiingskedule, lowerbestuur en klimaatstoestande ook identies was. Daar is dus ‘n
hoë waarskynlikheid dat al hierdie faktore daartoe kon bygedra het dat die effek van geologie
op die K status van van gronde versluier is, veral die effek op die K inhoud van sap teen oestyd.
Dit was duidelik dat seisoenale klimaatsverskile en bemestingspraktyke ’n groter effek as
geologie op die voedingstatus van die wingerd gehad het.
|
56 |
Evaluating the influence of winemaking practices on biogenic amine production by wine microorganismsSmit, Anita Yolandi 12 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology))--University of Stellenbosch, 2007. / Biogenic amines are nitrogenous compounds of low molecular weight found in most
fermented foods, including wine. These biologically produced amines are essential at
low concentrations for normal metabolic and physiological functions in animals, plants
and micro-organisms. However, biogenic amines can have adverse effects at high
concentrations and pose a health risk for sensitive individuals. Symptoms include
nausea, hot flushes, headaches, red rashes, respiratory distress and fluctuations in
blood pressure. A number of countries have implemented upper limits for histamine in
food and wine. This development has already started to threaten commercial export
transactions and may become more serious in the near future, especially in the
competitive wine industry of today. The most important biogenic amines in wine include
histamine, tyramine, putrescine, cadaverine and phenylethylamine which are produced
from the amino acids histidine, tyrosine, ornithine, lysine and phenylalanine
respectively.
Biogenic amines are mainly produced in wine by microbial decarboxylation of the
corresponding precursor amino acid. It may be produced by yeast during alcoholic
fermentation, by lactic acid bacteria during malolactic fermentation, or potentially by
spoilage microbes such as acetic acid bacteria and Brettanomyces. However, lactic acid
bacteria are widely accepted as the main causative agents.
Inoculation with commercial malolactic fermentation starter cultures that do not
possess the relevant decarboxylase genes may inhibit the growth and activity of
decarboxylase positive indigenous bacteria and as such control the production of
biogenic amines in wine. In this study it was shown that co-inoculation of malolactic
starter cultures together with alcoholic fermentation could reduce the incidence of
biogenic amines in wine compared to conventional inoculation protocols; presumably
because undesirable activities were restrained at an earlier stage during co-inoculation.
It was also indicated in this work that in some cases the effect of co-inoculation on
biogenic amine reduction may only be visible after a period of ageing. The frequency of
biogenic amine occurrence in wines aged for a short period was generally higher in the
presence of fermentation lees than in its absence.
This work also included a preliminary investigation into the contribution of
commercial wine yeast starter cultures to biogenic amine production. Diamines and
polyamines (putrescine, spermidine and cadaverine) were produced to variable extents
by all yeasts with very little or no production of physiologically important biogenic
amines (histamine, tyramine and phenylethylamine).
Another objective of this study was to evaluate the influence of common
winemaking practices on biogenic amine production under winemaking conditions. We
have shown that biogenic amine production by lactic acid bacteria could be influenced,
amongst others, by the presence of precursor amino acids in the grape must or wine,
the time of contact between juice or wine and grape skins, the time of contact between
wine and yeast lees, the presence of microbial nutrients, wine pH, sulphite and ethanol levels, the phenolic composition of the wine and the number of decarboxylase positive
lactic acid bacteria present in the wine.
Lately, the wine industry is under increasing pressure to increase measures to
ensure food safety and security and to eliminate any compound, present even in trace
amounts that could reduce the wholesomeness of the wine. The need arises for a rapid
and inexpensive method for quality control. In this study we investigated the potential to
use Fourier transform infrared spectroscopy to rapidly screen for the presence of
elevated levels of biogenic amines. This presents a novel method for the detection and
quantification of total biogenic amines in wines.
|
57 |
Functional analysis of a lignin biosynthetic gene in transgenic tobaccoMbewana, Sandiswa 03 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Necrotrophic fungi infect many economically important crop plants. This results in great losses
in the agricultural sector world-wide. Understanding the nature by which plants respond to
pathogens is imperative for genetically enhancing disease resistance in plants. Research tools
have significantly contributed to our understanding of how the plant responds to pathogen
attack, identifying an array of defence mechanisms used by plants upon attack.
Many fungal pathogens secrete endopolygalacturonases (endoPGs) when infecting
plants. These hydrolytic enzymes are inhibited by polygalacturonase-inhibiting proteins (PGIPs)
associated with plant cell walls. PGIPs are well characterised and their current known functions
are all linked to endoPG inhibition and the subsequent upregulation of plant defence pathways.
Work on grapevine PGIPs have shown that apart from being efficient antifungal proteins,
leading to protection of the plant against Botrytis cinerea when overexpressed, PGIPs might
also have additional functions linked to cell wall strengthening. This working hypothesis formed
the motivation of this study where a cinnamyl alcohol dehydrogenase (CAD) (1.1.1.195) gene
was targeted for functional analysis in tobacco (Nicotiana tabacum). Some previous work and
genetic resources obtained is relevant to this study, specifically previously characterized
transgenic tobacco lines overexpressing the Vitis vinifera pgip1 (Vvpgip1) gene. These lines
have confirmed PGIP-specific resistance phenotypes against B. cinerea, as well as increased
levels of CAD transcripts in healthy plants. Moreover, preliminary evaluations indicated
increased lignin levels as well as differential expression of several other cell wall genes in these
overexpressing lines (in the absence of infections).
In this study we generated a transgenic tobacco population, overexpressing the native
CAD14 gene, via Agrobacterium transformations. The transgene was overexpressed with the
Cauliflower Mosaic Virus promoter (CaMV 35Sp). The CAD transgenic population was analyzed
for transgene integration and expression and showed active transcription, even from leaves that
normally don’t express CAD to high levels. These lines, together with the untransformed control,
and a representative transgenic VvPGIP1 tobacco line previously characterized with elevated
expression of CAD were used for all further analyses, specifically CAD activity assays of stems
and leaves, as well as whole plant infections with B. cinerea. CAD enzyme activity assays were
performed on healthy uninfected plant lines, without inducing native CAD expression or
resistance phenotypes (i.e. without Botrytis infection). CAD activity was detected in leaves and
stems, but a statistically sound separation between the CAD population and the untransformed
control was only observed in the stems. The CAD assays also confirmed previous results that
indicated that CAD transcription was upregulated in the PGIP line in the absence of infection.
Overall, in all plant lines the stems exhibited 10-fold higher levels of CAD activity than the
leaves, but the transgenic VvPGIP1 line showed a further 2-3-fold increase in CAD activity in the stems, when compared to the untransformed control and the majority of the CAD
overexpressing lines.
Disease assessment by whole plant infections with B. cinerea of the CAD transgenic
plants revealed reduced disease susceptibility towards this pathogen. A reduction in disease
susceptibility of 20 – 40% (based on lesion sizes) was observed for a homologous group of
transgenic lines that was statistically clearly separated from the untransformed control plants
following infection with Botrytis over an 11-day-period. The VvPGIP1 transgenic line displayed
the strongest resistance phenotype, with reduction in susceptibility of 47%. The reduction in
plant tissue maceration and lesion expansion was most pronounced in the VvPGIP1 line
compared to the CAD transgenic plants, while the CAD transgenic plants showed more
reduction than the untransformed control. In combination, the data confirms that CAD
upregulation could lead to resistance phenotypes. Relating this data back to the previously
observed upregulation of CAD in the VvPGIP1-overexpressing lines, the findings from this study
corroborates that increased CAD activity contributes to the observed resistance phenotypes,
possibility by strengthening the cell wall.
In conclusion, this study yielded a characterized transgenic population overexpressing
the CAD14 gene; this overexpression contributed to increased RNA transcription compared to
the untransformed control plant, increased CAD activity (most notably in the stems) and a
disease resistance phenotype against Botrytis. These findings corroborates the current working
hypothesis in our group that PGIPs might have a role in preparing the plant cell for attack by
contributing to specific cell wall changes. The exact mechanisms are still currently unknown and
under investigation. The transgenic lines generated in this study will be invaluable in the
subsequent analyses where these various phenotypes will be subjected to profiling and
accurate cell wall analyses. / AFRIKAANSE OPSOMMING: Nekrotrofiese swamme infekteer en beskadig verskeie ekonomies belangrike gewasse. Dit lei
wêreldwyd tot groot verliese vir die landbousektor. Dit is noodsaaklik om te verstaan hoe plante
reageer teenoor patogene, sodat die siekteweerstand van plante verbeter kan word.
Navorsingshulpbronne het beduidend bygedra tot die kennis van plantreaksies tydens
patogeniese aanvalle, en het sodoende ‘n reeks van weerstandmeganismes, wat die plant
inspan tydens ‘n aanval, geïdentifiseer.
Verskeie patogeniese swamme skei endopoligalakturonases (endoPGs) af tydens plantinfeksie.
Hierdie hidrolitiese ensieme word geïnhibeer deur poligalakturonase-inhiberende
proteïene (PGIPs) wat met die plantselwand geassosieerd is. PGIPs is goed gekarakteriseerd
en al hulle huidiglik bekende funksies is gekoppel aan endoPG inhibisie en die daaropvolgende
opregulering van plant weerstandspaaie. Navorsing op wingerd PGIPs het gewys dat, afgesien
van die feit dat PGIPs goeie antifungiese proteïene is wat lei tot beskerming van die plant teen
Botrytis cinerea wanneer dit ooruitgedruk word, PGIPs ook moontlik addisionele funksies verrig
wat verwant is aan selwandversterking. Hierdie werkshipotese vorm die motivering vir hierdie
studie waarin ‘n sinnamiel alkohol dehidrogenase (SAD) (1.1.1.195) geen geteiken is vir
funksionele analise in tabak (Nicotiana tabacum). Vorige navorsing en genetiese hulpbronne
daardeur verkry is belangrik vir hierdie studie, spesifiek die gekarakteriseerde transgeniese
tabaklyne wat die Vitis vinifera pgip1 (Vvpgip1) geen ooruitdruk. Hierdie lyne besit bevestigde
PGIP-spesifieke weerstandsfenotipes teen B. cinerea, sowel as hoër vlakke van SAD
transkripte in gesonde plante. Voorlopige analises het ook aangedui dat hierdie ooruitdrukkende
lyne hoër lignien vlakke het, asook differensiële uitdrukking van verskeie ander selwandgene (in
die afwesigheid van infeksie).
In hierdie studie is ‘n transgeniese tabakpopulasie gegenereer wat die natuurlike tabak
SAD14 geen ooruitdruk, deur middel van Agrobacterium transformasie. Die transgeen is
ooruitgedruk deur die Blomkool Mosaïek Virus promoter (CaMV 35Sp). Die SAD transgeniese
populasie is geanaliseer vir transgeen integrasie en uitdrukking en het aktiewe transkriptering
getoon, selfs in blare waar daar normaalweg nie hoë vlakke van SAD uitgedruk word nie.
Hierdie lyne, die ongetransformeerde wilde-tipe kontrole sowel as ’n verteenwoordigende
transgeniese VvPGIP1 tabaklyn wat vooraf gekarakteriseerd was met hoë SAD uitdrukking, is
gebruik vir alle verdere analises, spesifiek SAD aktiwiteitstoetse in stingels en blare, asook
heelplantinfeksies met B. cinerea. Aktiwiteitsanalises van die SAD ensiem is gedoen op
gesonde ongeinfekteerde plantlyne, sonder om natuurlike tabak SAD uitdrukking of
weerstandsfenotipes te induseer (dus sonder Botrytis infeksie). SAD aktiwiteit is waargeneem in
beide die blare en stingels, maar ‘n statisties betekenisvolle skeiding is slegs gevind tussen die
SAD populasie en die ongetransformeerde kontrole in die stingels. Die SAD toetse het ook vorige resultate bevestig wat aangedui het dat SAD transkripsie opgereguleer word in die PGIP
lyn in die afwesigheid van infeksie. Die stingels het oor die algemeen ‘n 10-voudige
vermeerdering in SAD aktiwiteitsvlakke getoon in vergelyking met die blare, maar die
transgeniese VvPGIP1 lyn het ‘n verdere 2-3-voudige verhoging in SAD aktiwiteit gehad in die
stingels ,in vergelyking met die ongetransformeerde kontrole en die meerderheid van die SADooruitdrukkende
lyne.
Siekteweerstand ondersoeke deur middel van heelplantinfeksies met B. cinerea van die
SAD transgeniese plante, het verminderde vatbaarheid aangedui ten opsigte van hierdie
patogeen. ‘n Afname in siekte-vatbaarheid van 20 – 40% (gebaseer op wondgroottes) is
waargeneem vir ‘n homoloë groep transgeniese lyne wat statisties betekenisvol geskei kon
word van die ongetransformeerde kontrole plante na infeksie met Botrytis in ‘n infeksietoets wat
11 dae geduur het. Die VvPGIP1 transgeniese lyn het die mees weerstandbiedende fenotipe
gehad, met ‘n afname in siekte-vatbaarheid van 47%. Die afname in plantweefselafbreking en
wondgrootte was die duidelikste in die VvPGIP1 lyn in vergelyking met die SAD transgeniese
plante, terwyl die SAD transgeniese plante ‘n groter afname aangedui het as die
ongetransformeerde kontrole. In kombinasie het die data bevestig dat SAD opregulasie kan lei
tot weerstandbiedende fenotipes. Hierdie data, in vergelyking met die vorige bevinding van
opregulasie van SAD in die VvPGIP1-ooruitdrukkende lyne, bevestig dat hoër SAD aktiwiteit
bydra tot die waargenome weerstandbiedende fenotipes, moontlik deur versterking van die
plantselwand.
Ter afsluiting, hierdie studie het ‘n gekarakteriseerde transgeniese populasie wat die
SAD14 geen ooruitdruk gelewer; hierdie ooruitdrukking het bygedra tot hoër RNA transkripsie in
vergelyking met die kontrole, verhoogde SAD aktiwiteit (veral in die stingels) en siekteweerstandbiedende
fenotipes teenoor Botrytis. Hierdie bevindinge ondersteun die huidige
werkshipotese in ons groep dat PGIPs moontlik ‘n rol speel in die voorbereiding van die plantsel
teen infeksie deur spesifieke selwandveranderinge te veroorsaak. Die spesifieke meganismes is
steeds onbekend en word verder ondersoek. Die transgeniese lyne wat tydens hierdie studie
gegenereer is, sal baie belangrik wees in opvolgende analises waar hierdie verskillende
fenotipes gebruik kan word om die profiel van selwandkomponente, maar ook die akkurate
selwandsamestelling te bestudeer.
|
58 |
Analysis of endo-polygalacturonase activity in a recombinant yeast containing a reconstituted PGU1 geneVan Wyk, Herine 03 1900 (has links)
Thesis (MSc (Wine Biotechnology))--University of Stellenbosch, 2009. / The PGU1 gene encodes an endo-polygalacturonase, an enzyme that degrades pectin. Although the presence and function of this gene is well characterized in Saccharomyces cerevisiae, its regulation is very complex and not yet fully understood. Yeast producing a highly active polygalacturonase (PG) during alcoholic fermentation could potentially improve filtration and turbidity and also enhance extraction of certain aroma compounds. This could replace the addition of expensive commercial enzyme preparations that often contain unwanted enzymes.
The first objective of this study was to evaluate PGU1 expression in recombinant strains of S. cerevisiae that originally lacked the PGU1 gene. A functional PGU1 gene and its promoter were successfully re-introduced into their native position in the genomes of five wine strains. Three of these strains recovered PG activity while two did not transcribe the gene and subsequently lacked activity. The three strains that recovered activity were used in microvinification experiments to determine the effect of PG-producing yeast on the aroma profile of the wine. No significant differences were observed in the volatile compounds production between the recombinants and their respective wild types, but some tendencies arose, especially for the monoterpene geraniol.
The second objective of this study was to analyze the PGU1 gene and promoter from Saccharomyces paradoxus RO88 (a strain that exhibits high PG activity) and to compare it to those of S. cerevisiae S288C in order to identify differences that could potentially be responsible for the difference in their PG activities. Comparison of the gene sequences revealed several amino acid differences, one of which was in the peptide secretion signal. Analyses of the promoters also indicated some potentially important differences. Furthermore, S. cerevisiae strain VIN13, RO88 as well as two interspecies hybrids (all displaying varying PG activities) were compared under winemaking conditions. Clear differences were observed for the production of certain compounds. RO88 and the hybrids produced higher concentrations of certain volatile compounds, although they were not strong fermenters. Two recombinants, each containing a PGU1-overexpressing plasmid (one with the PGU1 gene from S. paradoxus and the other from S. cerevisiae), were also used in vinification to determine the effects of the different PGU1 gene on the aroma profile of the wine. Unfortunately, the plasmids were unstable and lost during the fermentation. Nevertheless, some tendencies were observed that indicated possible higher production of certain compounds by the recombinants compared to their wild types.
This study identified that regulation of the PGU1 gene differs between strains with different genetic backgrounds. Certain differences were observed in the PGU1 gene and promoter
sequences between S. cerevisiae and S. paradoxus that could potentially be the reason for the difference in their PG activities. From an oenological point of view, the presence of PGU1 in the genome of a fermenting strain tends to increase the aromatic potential of wine. These results provide a good platform for further studies on the PGU1 gene.
|
59 |
Qualidade de vinho tinto produzido com uvas da cultivar Isabel (Vitis labrusca) proveniente de duas regiões do Brasil (Nordeste e Sul)Arcanjo, Narciza Maria de Oliveira 23 March 2015 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2016-03-01T10:33:51Z
No. of bitstreams: 1
arquivototal.pdf: 1831010 bytes, checksum: 421de8a7889021979aa46f9b2a0cc773 (MD5) / Made available in DSpace on 2016-03-01T10:33:51Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1831010 bytes, checksum: 421de8a7889021979aa46f9b2a0cc773 (MD5)
Previous issue date: 2015-03-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Red wine made from Vitis labrusca accounts for 80% of Brazilian production. ‘Isabel’ is the name of the grape culture which has been attracting more and more attention in the Brazilian production of low-cost red table wine, which in turn has been widely consumed by various social classes. The aim of the present research was to evaluate the quality of dry red wine made from Isabel grapes, produced in two different regions of Brazil: one from the Siriji Valley, in a small, family-owned farm, in the town of São Vincente Férrer, in Northeastern Brazil (whose wine will be referred to as ‘IS’), and the other from the Serra Gaúcha, a region known for its wine production, located in Southern Brazil (whose wine will be referred to as IsB, IsSC and IsBb). In this context, the present study analyzed the physicochemical parameters required by the existing Brazilian legislation on wine, quantified the chemical parameters of phenolic compounds, organic acids, anthocyanins, and antioxidant capacity, and characterized the sensory profile and volatile compounds of wine made from Isabel grapes. The Northeastern wine (IS) produced in a small estate, presented only two parameters which were not in accordance with Brazilian legislation: alcoholic strength and level of reducing sugars, which indicates that there were some flaws in the vinification process. In general, the Southern wine samples (IsB, IsSC, IsBb) showed greater concentrations of phenolic compounds, flavonoids and superior anthocyanins. These values lead to a greater antioxidant capacity of Southern wine samples in relation to ABTS and ORAC methods. However, IS wine stood out for its greater antioxidant capacity in relation to the DDPH radical, possibly due to the presence of trans-Cinnamic acid; it also presented resveratrol concentrations which were in the same range as those of other wine samples. Before analysis of volatiles, a study was carried out on the optimization of volatile compound extraction in dry red table wine using SPME technique. The best conditions for extraction were: equilibrium time (teq) of 15 minutes; volatile extraction time of (teq) of 35 minutes; volatile extraction temperature (T) of 30 °C. Fifty-eight volatile compounds were identified in the volatile profile of the red wine samples; of these, the ones which stood out were esters (40%); followed by terpenes (20%), alcohols (17%), aldehydes and ketones (10%) and amines (3%). The remaining compound classes only accounted for 8%. The red wine samples made from Isabel grapes were sensorily characterized by 14 descriptors. It was noticed that aroma descriptors such as pungent, hot and volatile acidity were at their highest in the Northeastern wine samples, which was important, since it helped to differentiate these IS samples from the ones from Southern Brazil (p < 0.05). PCA analysis confirmed this differentiation between samples. It was noticed that the fruity descriptors were the ones which contributed the most to the aromatic profile of the samples analyzed. Therefore, one can conclude that the results obtained show the potential of wine production in Northeastern Brazil, making it necessary to improve the production process in this region. / Vinho tinto de mesa produzidos por uvas Vitis labrusca corresponde por 80% da produção brasileira. “Isabel” é a cultivar que vem destacando-se na produção brasileira de vinho tinto de custo mais reduzido, e com elevada taxa de consumo pelas diversas classes sociais. Objetivou-se na presente pesquisa avaliar a qualidade de vinho tinto seco com uva Isabel produzido em duas regiões do Brasil: no Vale do Siriji em pequena propriedade, através da agricultura familiar no Município de São Vicente Férrer no Nordeste do Brasil (vinho denominado por IS) e na Serra Gaúcha (vinhos denominados por IsB, IsSC, IsBb), região tradicional na produção de vinho na Região Sul do Brasil. Neste contexto avaliaram-se os parâmetros físico-químicos exigidos pela legislação brasileira vigente para vinhos; quantificou-se os parâmetros químicos de compostos fenólicos, ácidos orgânicos, antocianinas, capacidade antioxidante; e caracterizou-se o perfil sensorial e de compostos voláteis dos vinhos com uva Isabel. O vinho do Nordeste (IS), produzido em pequena propriedade, apresentou apenas dois parâmetros, o teor alcoólico e o teor de açúcares redutores, que não atenderam a legislação brasileira, indicando falhas no processo de vinificação. Em geral, os vinhos produzidos na Região Sul (IsB, IsSC, IsBb) apresentaram concentrações de compostos fenólicos, flavonóides e antocianinas superiores. Estes valores resultaram em uma maior capacidade antioxidante destes vinhos em relação aos métodos ABTS e ORAC; no entanto, o vinho IS destacou-se por maior capacidade antioxidante frente ao radical DPPH possivelmente em consequência da presença do ácido trans-cinâmico, além de apresentar concentrações de resveratrol dentro da faixa dos demais vinhos analisados. Anteriormente a análise dos voláteis, realizou-se um estudo de otimização das condições de extração dos compsotos voláteis em vinho tinto seco de mesa pela técnica de SPME. As melhores condições de extração foram: tempo de equilíbrio (teq) de 15 minutos; tempo de extração dos voláteis (teq) de 35 minutos; temperatura de extração dos voláteis (T) de 30 °C. Cinquenta e oito compostos voláteis foram identificados no perfil de voláteis dos vinhos tintos, com destaques para os ésteres (40 %), seguido pelos terpenos (20%), álcoois (17 %), aldeídos e cetonas (10 %), aminas (3 %) e apenas 8 % foram incluídos em outras classes de compostos. Os vinhos tintos de uva Isabel foram caracterizados sensorialmente por 14 descritores, observando-se que os aromas descritores pungente, quente e acidez volátil, obtiveram as maiores notas no vinho proveniente do Nordeste do Brasil e foram importantes para diferenciá-la das amostras produzidas no Sul do Brasil (p< 0,05). A análise multivariada PCA corroborou para esta interpretação de discriminação entre as amostras, observando-se que os descritores frutados foram os que contribuíram mais fortemente para o perfil de aroma dos vinhos analisados. Em conclusão, pode-se afirmar que os resultados encontrados demonstram o potencial do vinho produzido na Região Nordeste, fazendo-se necessário que melhorias no seu processo produtivo sejam introduzidas.
|
60 |
Sucho bylo, je a bude. Nebo ne? Etnografický výzkum vybraných městských vinic v Praze / The Phenomenon of Drought had always been, is, and will be present. Or not? Ethnographic research of selected city vineyards in PragueKoubková, Tereza January 2021 (has links)
Covering various aspects of the environmental approach, this diploma thesis mostly deals with the anthropological context of drought in the selected vineyards in Prague, the Czech Republic. This research embodies an ethnographic probe into the specific part of Czech viticulture. Based on the participatory observation methods and semi-structured interviews, the author describes the daily routine of winemaking on the Grébovka vineyard and the wider context of drought in several Prague vineyards. Research shows that winemakers who manage these vineyards experience different levels of drought and their responses to this phenomenon in the form of common agricultural adaptation mechanisms are influenced by factors arising mainly from the very nature of viticulture, the local conditions and specifics of these city vineyards and the involvement of all actors in the vineyard, that form a network in which they are interconnected and interact in a particular way. In this thesis the author also reflects these local dimensions and contexts of drought as one of the consequences of climate change in the broader context of (anthropology) of climate change. Based on her research, the author mainly discusses the issue of scientific forecasting, because this scientific vision of the future can differ significantly...
|
Page generated in 0.0517 seconds