• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 20
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 158
  • 31
  • 26
  • 22
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Integrated numerical model for wave induced seabed response around offshore structures

Lin, Zaibin January 2017 (has links)
Seabed stability in the vicinity of those offshore structure, which has been one of the particular concerns in engineering practice, can be compromised by the action of energetic waves. This project investigates the mechanisms of wave-induced soil response and liquefaction in a porous seabed near offshore structures. For this purpose both 2-Dimensional (2-D) and 3-Dimensional (3-D) integrated Wave-Seabed-Structure Interaction (WSSI) models have been developed within the project. They were used to simulate the effect of nonlinear wave-structure interaction on dynamic soil response in the neighbourhood of offshore pipelines, mono-pile structures, and multi-cylinder structures. Prior to applying the proposed WSSI models to practical engineering cases, several validations, mainly including wave and soil validations, were conducted. Excellent agreements between numerical and experimental results indicate the capacity of proposed WSSI models to simulate nonlinear wave-induced seabed response around offshore structures. Hereafter, the verified WSSI models are adopted to explore the mechanism of storm wave-induced soil response near offshore structures. The study of the offshore pipeline partially or fully buried in the seabed has shown that the leewake vortex can be sufficiently avoided with enough embedment, which also leads to lower possibility of the onset of scour in adjacent area of pipeline and the reduction of possible momentary liquefaction depth under pipeline bottom. Nonlinear wave-induced seabed response around a mono-pile structure, was investigated using the 3-D WSSI model developed in OpenFOAM, which allows to run numerical WSSI simulations in parallel. It was shown that, for waves propagating in a given longitudinal direction, the liquefaction occurs with greater depth at the lateral sides of mono-pile structure than at the front and back sides of mono-pile structure. Increasing penetration depth of the mono-pile structure slightly reduces the adjacent liquefaction depth. By adopting the same 3-D WSSI model, the numerical investigation of wave-induced soil response in the proximity of a multi-cylinder structure has been conducted. As found in the analysis by using same wave parameters in the case of a mono-pile structure, the nonlinear interaction between waves and multi-cylinder structure may significantly alter the distribution of liquefaction depth around each cylinder, compared to that for a single cylinder. Moreover, considering the effect of incident wave angles, such as 0° and 45° wave headings, it can be noted that the downstream cylinders are better protected from liquefaction threat due to the presence of upstream cylinders.
92

Ultimate capacity of offshore platform conductor strings

McGowan, David 17 March 2010 (has links)
The ultimate capacity of offshore platform conductor strings is studied. The unique way in which conductors are loaded is described and the various design methods that exist are presented. Previous research in the field of tubular member behavior is also reviewed. The results of seven experimental tests are evaluated and compared with the existing conductor design criteria. The test matrix calls for various amounts of lateral loading to be imposed on the conductor system. Axial load, applied to simulate the weight of inner casings, is then applied until failure. Results indicate that internally applied axial loads do not induce stability related failure in the outer conductor. Additionally, the design internal moment, which is based on an inner casing being as eccentric as possible, accurately represents the upper limit for the bending moment observed in the experimental tests. The flexural stiffness of the inner casing serves to strengthen the conductor system. Therefore, a design method that considers the strength of the outer conductor and the inner casings is recommended. / Master of Science
93

Dynamic positioning and motion mitigation of a scaled sea basing platform

Unknown Date (has links)
A 6-Degree Of Freedom (DOF) numeric model and computer simulation along with the 1/10th scale physical model of the Rapidly Deployable Stable Platform (RDSP) are being developed at Florida Atlantic University in response to military needs for ocean platforms with improved sea keeping characteristics. The RDSP is a self deployable spar platform with two distinct modes of operation enabling long distance transit and superior seakeeping. The focus of this research is the development of a Dynamic Position (DP) and motion mitigation system for the RDSP. This will be accomplished though the validation of the mathematical simulation, development of a novel propulsion system, and implementation of a PID controller. The result of this research is an assessment of the response characteristics of the RDSP that quantifies the performance of the propulsion system coupled with active control providing a solid basis for further controller development and operational testing. / by Sean P. Marikle. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
94

Dynamically installed anchors for floating offshore structures

Richardson, Mark Damian January 2008 (has links)
The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors have been proposed as a cost-effective anchoring solution for floating offshore structures in deep water environments. The rocket or torpedo shaped anchor is released from a designated drop height above the seafloor and allowed to penetrate the seabed via the kinetic energy gained during free-fall and the anchor’s self weight. Dynamic anchors can be deployed in any water depth and the relatively simple fabrication and installation procedures provide a significant cost saving over conventional deepwater anchoring systems. Despite use in a number of offshore applications, information regarding the geotechnical performance of dynamically installed anchors is scarce. Consequently, this research has focused on establishing an extensive test database through the modelling of the dynamic anchor installation process in the geotechnical centrifuge. The tests were aimed at assessing the embedment depth and subsequent dynamic anchor holding capacity under various loading conditions. Analytical design tools, verified against the experimental database, were developed for the prediction of the embedment depth and holding capacity.
95

Structural reliability of offshore wind turbines

Agarwal, Puneet, 1977- 31 August 2012 (has links)
Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the load random variable(s) conditional on the environment are integrated with the joint probability distribution of environmental random variables (from wind, waves, current etc.) to obtain the so-called “long-term" distribution, from which long-term loads may be obtained for any return period. The accurate prediction of long-term extreme loads for offshore wind turbines, using efficient extrapolation procedures, is our main goal. While loads data, needed for extrapolation, are obtained by simulations in a design scenario, field data can be valuable for understanding the offshore environment and the resulting turbine response. We use limited field data from a 2MW turbine at the Blyth site in the United Kingdom, and study the influence of contrasting environmental (wind) regimes and associated waves at this site on long-term loads, derived using extrapolation. This study also highlights the need for efficient extrapolation procedures and for modeling nonlinear waves at sites with shallow water depths. An important first step in extrapolation is to establish robust short-term distributions of load extremes. Using data from simulations of a 5MW onshore turbine model, we compare empirical short-term load distributions when two alternative models for extremes--global and block maxima--are used. We develop a convergence criterion, based on controlling the uncertainty in rare load fractiles, which serves to assess whether or not an adequate number of simulations has been performed. To establish long-term loads for a 5MW offshore wind turbine, we employ an inverse reliability approach, which is shown to predict reasonably accurate long-term loads, compared to a more expensive direct integration approach. We show that blade pitching control actions can be a major source of response variability, due to which a large number of simulations may be required to obtain stable tails of short-term load distributions, and to predict accurate ultimate loads. We address model uncertainty as it pertains to wave models. We investigate the effect of using irregular nonlinear (second-order) waves, compared to irregular linear waves, on loads for an offshore wind turbine. We incorporate this nonlinear irregular wave model into a procedure for integrated wind-wave-response analysis of offshore wind turbines. We show that computed loads are generally somewhat larger with nonlinear waves and, hence, that modeling nonlinear waves is important is response simulations of offshore wind turbines and prediction of long-term loads. / text
96

Numerical study of geotechnical penetration problems for offshore applications

Zhou, Hongjie January 2008 (has links)
The research carried out in this thesis has concentrated on the application of numerical solutions to geotechnical penetration problems in offshore engineering. Several important issues closely relevant to deep-water oil and gas developments were investigated, covering installation of suction caisson foundations, interpretation of fullflow penetrometers and shallow penetration of a cylindrical object (submarine pipeline or T-bar), all in clayey sediments such as are often encountered in deep-water sites. These problems are commonly characterised by large vertical movements of structural elements relative to the seabed. A large deformation finite element method was adopted and further developed to simulate these challenging problems, referred to as Remeshing and Interpolation Technique with Small Strain. In this approach, a sequence of small strain Lagrangian increments, remeshing and interpolation of stresses and material properties are repeated until the required displacement has been reached. This technique is able to model relative motion between the penetrating objects and the soil, which is critical for evaluating soil heave inside the caissons, the effect of penetration-induced remoulding on the resistance of full-flow penetrometers, and influence of soil surface heave on the embedment of pipelines. '...' Simple expressions were presented allowing the resistance factors for the T-bar and ball penetrometers to be expressed as a function of the rate and strain-softening parameters. By considering average strength conditions during penetration and extraction of these full-flow penetrometers, an approximate expression was derived that allowed estimation of the hypothetical resistance factor with no strain-softening, and hence an initial estimate of the stain-rate dependency of the soil. Further simulations of cyclic penetration tests showed that a cyclic range of three diameters of the penetrometers was sufficient to avoid overlap of the failure mechanism at the extremes and mid-point of the cyclic range. The ball had higher resistance factors compared with the T-bar, but with similar cyclic resistance degradation curves, which could be fitted accurately by simple expressions consistent with the strain-softening soil model adopted. Based on the curve fitting, more accurate equations were proposed to deduce the resistance factor with no strain-softening, compared with that suggested previously based on the resistances measured in the first cycle of penetration and extraction. The strain-rate dependency was similar in intact or post-cyclic soil for a given rate parameter. The resistance factor for the post-cyclic condition was higher than that for the initial conditions, to some degree depending upon soil sensitivity and brittleness parameter. For the shallow penetration of a cylindrical object, the penetration resistance profile observed from centrifuge model tests was very well captured by the numerical simulation. The mechanism of shear band shedding was reproduced by the numerical technique, although the frequency of the shear band generation and the exact shape of the heave profile were not correctly captured, which were limited by the simple strainsoftening soil model adopted.
97

A computational procedure for simulation of torpedo anchor installation, set-up and pull-out

Raie, Mohammad Sayfolah, 1977- 16 October 2012 (has links)
Torpedo-shaped anchors serve as foundations for risers and floating structures in the deep-water marine environment. Such cone-tipped, cylindrical steel pipes, ballasted with concrete and scrap metal, penetrate the seabed by the kinetic energy they acquire during free fall. Estimation of the embedment depth is a crucial part of the design process in that the pull-out capacity is strongly dependent on the strength of the surrounding soil. This dissertation presents the development of a procedure based on a computational fluid dynamics (CFD) model for the prediction of the embedment depth of torpedo anchors. By means of a representation of the soil as a viscous fluid, the CFD model leads not only to the resisting forces on the anchor but the distributions of pressure and shear in the soil as well. These distributions are then imported in another computational tool for finite-element (FE) analysis of coupled deformation and fluid flow in porous media for further simulations of reconsolidation of the soil next to the anchor and, ultimately, short-term and long-term capacity estimation. This dissertation presents CFD results for torpedo-anchor installation in soil, comparisons with experimental data and, finally, results from FE analysis of soil reconsolidation and anchor pull-out. / text
98

Model analysis of a mooring system for an ocean current turbine testing platform

Unknown Date (has links)
In response to Florida's growing energy needs and drive to develop renewable power, Florida Atlantic Universitys Center for Ocean Energy Technology (COET) plans to moor a 20 kW test turbine in the Florida Current. No permanent mooring systems for deepwater hydrokinetic turbines have been constructed and deployed, therefore little if anything is known about the performance of these moorings. To investigate this proposed mooring system, a numeric model is developed and then used to predict the static and dynamic behavior of the mooring system and attachments. The model has been created in OrcaFlex and includes two surface buoys and an operating turbine. Anchor chain at the end of the mooring line develops a catenary, providing compliance. Wind, wave, and current models are used to represent the environmental conditions the system is expected to experience and model the dynamic effects on the system. The model is then used to analyze various components of the system. The results identify that a mooring attachment point 1.25 m forward of the center of gravity on the mooring buoy is ideal, and that the OCDP and turbine tether lengths should be no shorter than 25 and 44 m, respectively. Analysis performed for the full system identify that the addition of the floats decreases the tension at the MTB attachment location by 26.5 to 29.5% for minimum current, and 0.10 to 0.31% for maximum current conditions. / by Allison Rose Cribbs. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
99

Análise numérica de fenômenos de impacto hidrodinâmico em plataformas offshore. / Numerical analysis of hydrodynamic impact phenomena on offshore platforms.

Bellezi, Cezar Augusto 19 November 2014 (has links)
O presente trabalho é focado no estudo dos violentos fenômenos de impacto hidrodinâmico que podem prejudicar a operação de plataformas offshore. São três os fenômenos abordados neste trabalho: o green water, o wave runup e o sloshing. O fenômeno de wave runup consiste na projeção vertical de uma coluna de água devido ao impacto de ondas em estruturas transversais. O fenômeno de green water consiste no embarque de água no convés, podendo danificar os equipamentos da planta de produção. Por fim, o sloshing consiste no movimento violento de fluído em tanques parcialmente preenchidos, resultando em perigosos carregamentos em suas paredes. Tais fenômenos possuem natureza altamente não linear e sua análise, considerando-se toda a sua complexidade, ainda constitui um desafio para a engenharia naval e oceânica. Os métodos de partículas têm se destacado no tratamento de tais fenômenos envolvendo interação fluído-estruturas, grandes deformações e fragmentação de superfície livre. Desta maneira, optou-se pelo emprego do método de partículas Moving Particles Semi-Implicit (MPS) neste trabalho para o estudo dos fenômenos de impacto hidrodinâmico. O MPS é um método totalmente lagrangeano para escoamentos incompressíveis. Para os três fenômenos abordados neste trabalho há uma primeira etapa de validação, na qual os resultados numéricos são comparados a resultados experimentais da literatura. Uma segunda etapa é baseada na aplicação do método numérico na análise de ferramentas para a mitigação dos esforços resultantes do impacto hidrodinâmico. Nesta etapa é investigada a influência do formato da proa no fenômeno de green water e a utilização de anteparas fixas e flutuantes para a mitigação de sloshing em tanques. / The present work is focused in the study of the violent hydrodynamic impact phenomenon which could jeopardize the offshore platforms operation. In this work three different phenomena involving hydrodynamic impact are studied: green water, wave runup and sloshing. The wave runup consists in the vertical projection of a water column due to wave impact on a transversal structure, such as submersible columns. The green water consists in the water boarding on the deck which could damage the equipment over the oil platform deck. Finally, the sloshing phenomenon is the violent movement of fluid in partially filled tanks, resulting in dangerous impact loads at its walls. The hydrodynamic impact phenomenon has strongly non linear nature and is still a challenge for the naval and offshore engineering its analysis considering all its complexity. The particle methods present advantages in the analysis of phenomena involving fluid structure interaction, large free surface deformation, fragmentation and merging. Therefore, in the present study the Moving Particles Semi-Implicit (MPS) method is used. The MPS is a fully lagrangian method for the simulation of incompressible flows. For the three phenomena studied in the present work a first step of validation is performed. In the validation step the numerical results obtained by the particle method are compared to experimental data presented in the literature. The second step consists in the application of the numerical method to investigate simple mechanisms to mitigate the hydrodynamic impact loads. For example, the effect of the bow shape in the green water phenomenon is studied. Also in this step the use of fixed and floating baffles in order to suppress the sloshing phenomenon are investigated.
100

The estimation of natural frequencies and damping ratios of offshore structures

Campbell, Robert Bradlee January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Robert Bradlee Campbell. / Ph.D.

Page generated in 0.1025 seconds