• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 76
  • 66
  • 14
  • 13
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 531
  • 77
  • 66
  • 64
  • 62
  • 52
  • 46
  • 44
  • 43
  • 42
  • 38
  • 33
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Tissue-selective activation and toxicity of substituted dichlorobenzenes : studies on the mechanism of cell death in the olfactory mucosa /

Franzen, Anna, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2005. / Härtill 4 uppsatser.
52

The development of multisensor arrays utilising conducting polymers

Hinton, Andrew January 1997 (has links)
This thesis is concerned with the continued development of multisensor array sensing technology for the detection and classification of aromas. The technology applies the use of conducting polymers grown across a gap between metallic conductors. The electrochemically deposited films complete a circuit and providing electrical resistance. In this format the films act as chemical resistors (chemiresistors) the current flow being influenced by the polymers' molecular electronics. Devices of this nature are potentially useful as sensors for analytes which cause the reversible modulation of the films' molecular electronics, leading to a detectable resistance change. Variation in the chemical and physical properties of the conducting polymer films has led to the generation of sensing devices capable of providing rapid, meaningful sensory information. The development of multisensor arrays containing a series of sensing devices having broad ranging sensitivities, has enabled effective discrimination of sample analytes. The information generated from such an array provides a 'fingerprint' or patterned response relating directly to the sample analyte. Complex statistical processing techniques have been coupled with the sensor technology to categorise and differentiate between the 'fingerprints' obtained. Instrumentation based on multisensor array technology has been developed by Neotronics Scientific Ltd., who currently market the NOSE (Neotronics Olfactory Sensing Equipment) based upon conducting polymer sensors. The research project resulting in this thesis was intended to develop and examine conducting polymer chemiresistor technology and explore the parameters that contribute to the production of effective discriminating sensors for use in array devices. The study involved an investigation of the variables involved in the electropolymerisation protocols, and expansion of the sensing chemiresistors available. This was achieved by analysis of polymer fabrication methods, and the variation in monomer and electrolyte feedstocks used during polymerisation. Polymer film stability was a major feature of the work performed as the long-term effectiveness of a sensing device is governed by environmental stability allowing reproducible analysis. Sensor optimisation was investigated using an individual system to determine the effect of the electrodeposition protocols, surface morphology, baseline resistance and film thickness. Polymer composition and stability were studied using a series of electrochemical, spectroscopic and surface analysis techniques. The data obtained resulted in the fabrication of chemiresistors not previously tested in electronic nose technology. Experimental optimisation studies also allowed variation in the nature of the responses obtained. A final area of investigation was the analysis of chemiresistors within a multisensor array environment using the NOSE technology. A series of arrays were prepared and the sensors exposed to a number of single, pure, organic analytes. From this data information was obtained on sensor response relating to molecular size, shape, position and nature of functional groups. The multifaceted nature of these experiments increased the number and response characteristics accessible to Neotronics, and provided a contribution to the knowledge surrounding the interactions between conducting polymer films and volatile organic analytes.
53

P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb

Pyrski, Martina, Tusty, Mahbuba, Eckstein, Eugenia, Oboti, Livio, Rodriguez-Gil, Diego J., Greer, Charles A., Zufall, Frank 04 September 2018 (has links)
Voltage-gated calcium (Cav) channels are a prerequisite for signal transmission at the first olfactory sensory neuron (OSN) synapse within the glomeruli of the main olfactory bulb (MOB). We showed previously that the N-type Cav channel subunit Cav2.2 is present in the vast majority of glomeruli and plays a central role in presynaptic transmitter release. Here, we identify a distinct subset of glomeruli in the MOB of adult mice that is characterized by expression of the P/Q-type channel subunit Cav2.1. Immunolocalization shows that Cav2.1+ glomeruli reside predominantly in the medial and dorsal MOB, and in the vicinity of the necklace glomerular region close to the accessory olfactory bulb. Few glomeruli are detected on the ventral and lateral MOB. Cav2.1 labeling in glomeruli colocalizes with the presynaptic marker vGlut2 in the axon terminals of OSNs. Electron microscopy shows that Cav2.1+ presynaptic boutons establish characteristic asymmetrical synapses with the dendrites of second-order neurons in the glomerular neuropil. Cav2.1+ glomeruli receive axonal input from OSNs that express molecules of canonical OSNs: olfactory marker protein, the ion channel Cnga2, and the phosphodiesterase Pde4a. In the main olfactory epithelium, Cav2.1 labels a distinct subpopulation of OSNs whose distribution mirrors the topography of the MOB glomeruli, that shows the same molecular signature, and is already present at birth. Together, these experiments identify a unique Cav2.1+ multiglomerular domain in the MOB that may form a previously unrecognized olfactory subsystem distinct from other groups of necklace glomeruli that rely on cGMP signaling mechanisms.
54

Ultrastructural Characteristics of Cultured Embryonic Mouse Olfactory Epithelial and Bulb Cells

Guo, Luzhi 08 1900 (has links)
This laboratory is involved in physiological and histochemical studies of olfactory tissue grown in cell culture in an attempt to create an in vitro model of the olfactory system. The present study is an in-depth ultrastructural study of the morphology of cultured olfactory cells to determine the extent of similarities and differences between cultured tissues and the intact olfactory system in vivo.
55

Zinc Toxicity in Odora Cells

Hsieh, Heidi 23 September 2011 (has links)
No description available.
56

Odor processing and associative olfactory learning in the moth Manduca sexta. / 烟草天蛾嗅覺系統運作及氣味學習的原理研究 / CUHK electronic theses & dissertations collection / Yan cao tian e xiu jue xi tong yun zuo ji qi wei xue xi de yuan li yan jiu

January 2010 (has links)
Neural representations of odors get associated with other stimuli through experience. Are action potentials the neural representation that directly gets associated with reinforcement during conditioning? In Manduca , I found that odor presentations elicited only one or two spikes at odor onset (and sometimes offset) in each of a small portion of Kenyon cells, a population of neurons known to be crucial for olfactory associative learning. By using a series of odor-taste associative conditioning paradigms with various sucrose presentation timings, I carefully controlled the temporal overlap between Kenyon cell spiking and sucrose reinforcement timing. I found that in paradigms that led to learning, spiking in Kenyon cells ended well before the reinforcement was given. Further, increasing the temporal overlap between Kenyon cell spiking and sucrose reinforcement actually reduced learning efficacy. Therefore, spikes in Kenyon cells are not the neural representation that gets directly reinforced, and Hebbian spike timing--dependent plasticity in Kenyon cells alone cannot underlie this learning. / Two important focuses in neuroscience are to study how animals process sensory stimuli, and how such stimuli get associated with other sensory modalities through experience. Often, sensory stimuli elicit the oscillatory synchronization of neurons in different parts of the brain, and thus may constitute an important stage in sensory processing. Odor-evoked oscillatory synchronization has been observed in a wide variety of animals, including mammals and insects. Despite differences in details of anatomical structure, animals from widely different phyla appear to use similar strategies to encode odors. Here, using the moth Manduca sexta, I examined the factors that cause odor-evoked oscillatory synchronization of olfactory neurons and that determine the frequency of these oscillations. I found that frequency of oscillations decreased from ∼40 Hz to ∼20 Hz during the course of a lengthy odor pulse. This decrease in oscillatory frequency appeared in parallel with a decrease in net olfactory receptor output, suggesting that the intensity of olfactory receptor neuron input to the antennal lobe, the first olfactory relay center, may determine oscillatory frequency. However, I found that changing odor concentration had little effect on oscillatory frequency. Combining the results of recordings made in vivo and computational models, I found that increasing odor concentration recruited additional, but less well-tuned olfactory receptor neurons to respond to the odor. Firing rates of these neurons were tightly constrained by adaptation and saturation. My work established that, in the periphery, odor concentration is mainly encoded by the size of the olfactory receptor neuron population that responded to the odor, whereas oscillatory frequency is determined by the adaptation and saturation of this response. / Ong, Chik Ying Rose. / Advisers: Siu Kai Kong; Mark Stopfer. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 132-147). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
57

An in vitro and in vitro study on the role of the glycoprotein fibulin-3 in olfactory nerve growth and repair

Vukovic, Jana January 2008 (has links)
The primary olfactory pathway in adult mammals has retained a remarkable potential for self-repair. Olfactory ensheathing cells (OECs), specialized glial cells within the olfactory nerve, are thought to play an important role in the ongoing growth and replenishment of sensory connections in this system. To gain insight into novel molecules that could mediate OEC-supported growth of axons within the olfactory nerve, gene expression profiling experiments revealed very high expression of the fibulin-3 glycoprotein in OECs. To date, research on fibulin-3 has been limited and mainly focused on its involvement in Doyne honeycomb retinal dystrophy, vasculogenesis and tumor formation. As the extracellular matrix associated with OECs is thought to be an important contributor to a growth-permissive environment, the main aim of this thesis was to define a putative role for fibulin-3 during olfactory receptor neuron replacement and regeneration. This hypothesis was investigated in a series of in vitro and in vivo experiments that involved lentiviral vectors to manipulate fibulin-3 gene expression in OECs as well as the use of knock-out mice. Using genetically-modified OECs, experimental data showed that increased levels of fibulin-3 induced morphological changes in OECs and also impeded their migration. Lentiviral vector-mediated expression of fibulin-3 in OECs also had an inhibitory effect on neurite outgrowth from dorsal root ganglion explants. On the other hand, knock-down of fibulin-3 levels via siRNA technology resulted in reduced proliferation. Comparative lesioning experiments in fibulin-3 knock-out and wild-type mice allowed for further assessment of a role for fibulin-3 in olfactory nerve repair in vivo. Two experimental injury models, i.e. epithelial (Triton-X) lesioning and olfactory bulbectomy, were employed. The results obtained were in line with in vitro observations. A lack of fibulin-3 in knock-out mice resulted in a seemingly augmented regeneration of the olfactory epithelium at 10 days post-injury. However, at the latest recovery time point of 42 days post-injury, an impaired recovery of the olfactory epithelium from the experimental insults was observed. Although the precise mechanism for the latter phenomenon is not yet fully understood, our data point towards several factors which include vascular abnormalities and altered cell proliferation within the olfactory epithelium. Additionally, the precise protein distribution of another wide-spread family of extracellular matrix molecules, the laminins, was investigated in this thesis. It was of interest to investigate the spatiotemporal expression of laminin isoforms during iii olfactory nerve development and regeneration as these molecules may have distinct roles in promoting olfactory sensory neuron growth and patterning. In situ hybridization and immunohistochemical studies concluded that laminin-211 and laminin-411 were the most likely candidates to play such a role. In summary, this thesis provides new insights into the role of the extracellular matrix, fibulin-3 in particular, in regulating cell migration, division and axonal growth in the primary olfactory pathway. Such knowledge also gives a greater understanding of the molecular mechanisms by which OEC transplants may enhance axonal regeneration elsewhere in the CNS.
58

Effect of IP3R3 and NPY on Age-Related Declines in Olfactory Stem Cell Proliferation

Jia, Cuihong, Hegg, Colleen C. 01 January 2015 (has links)
Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3+ and NPY+ microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.
59

Centrifugal Input Modifies Spontaneous Activity of Olfactory Bulb Neurons

Ford, Neil C. 09 October 2013 (has links)
No description available.
60

Rôle de la neurogénèse bulbaire dans la mémorisation des odeurs chez la souris

Belnoue, Laure 07 December 2009 (has links)
Le système constitué de la zone sous ventriculaire (ZSV) et du bulbe olfactif (BO) est l’une des deux régions cérébrales capables à l’âge adulte de produire de nouveaux neurones. La mise en évidence de cette neurogénèse adulte bulbaire a suscité un grand nombre d’interrogations quant à son rôle fonctionnel. Cependant les études réalisées dans ce domaine sont rares et contradictoires. L’objectif de cette thèse a été d’étudier l’impact de différentes expériences olfactives sur la neurogénèse afin de mieux comprendre son rôle fonctionnel. Nous avons choisi pour cela deux approches : d’une part l’étude de l’implication des néoneurones bulbaires lors de deux tâches d’apprentissage olfactif mettant en œuvre des odeurs neutres ; et d’autre part l’étude du rôle de ces néoneurones dans une situation de vie où l’olfaction joue un rôle primordial et où des variations de neurogénèse ont été rapportées: la maternité. Dans un premier temps, nous avons mis en évidence grâce à une stratégie d’anatomie fonctionnelle que les néoneurones de 5 semaines étaient recrutés lors d’un apprentissage de discrimination olfactive, mais pas lors de la restitution de cette information. Dans un deuxième temps, nous avons mis en évidence que la maternité améliorait les performances olfactives, et que cette amélioration était abolie par un stress gestationnel. Cependant, nous n’avons pas pu mettre en relation ces modifications de performances olfactives liées à la maternité et au stress avec des variations de neurogénèse. Nos travaux supportent l’hypothèse selon laquelle les néoneurones bulbaires sont impliqués dans la discrimination olfactive et mettent en évidence pour la première fois un impact de la maternité, qu’elle soit normale ou pathologique, sur les performances olfactives des mères. / In the mammalian brain, the subventricular zone (ZSV) and olfactory bulb (BO) system is a region where new neurons are continuously added throughout adulthood. While the functional consequences of continuous hippocampal neurogenesis have been extensively studied, the role of olfactory adult-born neurons remains more elusive. In particular, the involvement of these newborn neurons in odor discrimination and long-term odor memory is still a matter of debate. To address this question, we used two approaches. In the first one, we studied the recruitment of granular olfactory newborn neurons in two different tasks of olfactory learning with neutral odors. In the second one we studied the role of olfactory newborn neurons in a life situation where olfaction is crucial and where an increase in olfactory neurogenesis was reported, i.e. motherhood. In the first study, we found that odor discrimination learning recruited newborn neurons preferentially over preexisting ones, while odor memory restitution did not specifically activate newborn cells. Results of our second study indicate that motherhood improves olfactory memory and that this enhancement is abolished by a gestational stress. However, in our experimental conditions, we could not relate variations in neurogenesis with the modifications of olfactory performances linked to motherhood or stress. In conclusion our work brings new data in support of a functional role for newborn neurons in olfactory discrimination and shows for the first time an impact of motherhood, whether normal or pathological, on the olfactory performances of mothers.

Page generated in 0.6364 seconds