• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Contribution to Validation and Testing of Non-Compliant Docking Contact Dynamics of Small and Rigid Satellites Using Hardware-In-The-Loop Simulation

Bondoky, Karim 22 December 2020 (has links)
Spacecraft (S/C) docking is the last and most challenging phase in the contact closure of two separately flying S/C. The design and testing of S/C docking missions using software-multibody simulations need to be complemented by Hardware-In-The-Loop (HIL) simulation using the real docking hardware. The docking software multibody simulation is challenged by the proper modeling of contact forces, whereas the HIL docking simulation is challenged by proper inclusion of the real contact forces. Existing docking HIL simulators ignore back-reaction force modeling due to the large S/C sizes, or use compliance devices to reduce impact, which alters the actual contact force. This dissertation aims to design a docking HIL testbed to verify docking contact dynamics for small and rigid satellites by simulating the real contact forces without artificial compliance. HIL simulations of docking contact dynamics are challenged mainly by: I. HIL simulation quality: quality of realistic contact dynamics simulation relies fundamentally on the quality of HIL testbed actuation and sensing instrumentation (non-instantaneous, time delays, see Fig. 1) II. HIL testbed design: HIL design optimization requires a justified HIL performance prediction, based on a representative HIL testbed simulation (Fig. 2), where appropriate simulation of contact dynamics is the most difficult and sophisticated task. The goal of this dissertation is to carry out a systematic investigation of the technically possible HIL docking contact dynamics simulation performances, in order to define an appropriate approach for testing of docking contact dynamics of small and rigid satellites without compliance and using HIL simulation. In addition, based on the investigations, the software simulation results shall be validated using an experimental HIL setup. To achieve that, multibody dynamics models of docking S/C were built, after carrying out an extensive contact dynamics research to select the most representative contact model. Furthermore, performance analysis models of the HIL testbed were built. In the dissertation, a detailed parametric analysis was carried out on the available models’ design-spaces (e.g., spacecraft, HIL testbed building-blocks and contact dynamics), to study their impacts on the HIL fidelity and errors (see Fig. 1). This was done using a generic HIL design-tool, which was developed within this work. The results were then used to identify the technical requirements of an experimental 1-Degree-of-Freedom (DOF) HIL testbed, which was conceived, designed, implemented and finally utilized to test and validate the selected docking contact dynamics model. The results of this work showed that the generic multibody-dynamics spacecraft docking model is a practical tool to model, study and analyze docking missions, to identify the properties of successful and failed docking scenarios before it takes place in space. Likewise, the 'Generic HIL Testbed Framework Analysis Tool' is an effective tool for carrying out performance analysis of HIL testbed design, which allows to estimate the testbed’s fidelity and predict HIL errors. Moreover, the results showed that in order to build a 6DOF HIL docking testbed without compliance, it is important to study and analyze the errors’s sources in an impact and compensate for them. Otherwise, the required figure-of-merits of the instruments of the HIL testbed would be extremely challenging to be realized. In addition, the results of the experimental HIL simulation (i.e., real impacts between various specimen) serve as a useful contribution to the advancement of contact dynamics modeling.
2

DEVELOPMENT OF AN OPEN-SOURCE TOOLBOX FOR DESIGN AND ANALYSIS OF ACTIVE DEBRIS REMEDIATION ARCHITECTURES

Joshua David Fitch (16360641) 15 June 2023 (has links)
<p> Orbital Debris is a growing challenge for the Space Industry. The increasing density of derelict objects in high-value orbital regimes is resulting in more conjunction warnings and break-up events with cascading repercussions on active satellites and spacecraft. The recent rapid growth of the commercial space industry, in particular proliferated satellite constellations, has placed orbital debris remediation at the forefront of Space Industry efforts. The need to remove existing debris, combined with a growing demand for active satellite life extension services, has created an emerging market for space logistics, in particular spacecraft capable of rendezvous and docking, orbital refueling, debris deorbiting, or object relocation. This market has seen numerous companies emerge with multi-purpose on-orbit servicing platforms. This ecosystem poses technological, economical, and policy questions to decision-makers looking to acquire platforms or invest in technologies and requires a System-of-Systems approach to determine mission and system concepts of merit. An open-source modeling, analysis, and simulation software toolbox has been developed which enables rapid early-stage analysis and design of diverse fleets of on-orbit servicing platforms, with a specific emphasis on active debris removal applications. The toolbox provides fetching and processing of real-time orbital catalog data, clustering and scoring of high-value debris targets, flexible and efficient multi-vehicle multi-objective time-varying routing optimization, and fleet-level lifecycle cost estimation. The toolbox is applied to a diverse sample of promising commercial platforms to enable government decision-makers to make sound investment and acquisition decisions to support the development of ADR technologies, missions, and companies. </p>
3

Optimal cooperative and non-cooperative peer-to-peer maneuvers for refueling satellites in circular constellations

Dutta, Atri 06 April 2009 (has links)
On-orbit servicing (OOS) of space systems provides immense benefits by extending their lifetime, by reducing overall cost of space operations, and by adding flexibility to space missions. Refueling is an important aspect of OOS operations. The problem of determining the optimal strategy of refueling multiple satellites in a constellation, by expending minimum fuel during the orbital transfers, is challenging, and requires the solution of a large-scale optimization problem. The conventional notion about a refueling mission is to have a service vehicle visit all fuel-deficient satellites one by one and deliver fuel to them. A recently emerged concept, known as the peer-to-peer (P2P) strategy, is a distributed method of replenishing satellites with fuel. P2P strategy is an integral part of a mixed refueling strategy, in which a service vehicle delivers fuel to part (perhaps half) of the satellites in the constellation, and these satellites, in turn, engage in P2P maneuvers with the remaining satellites. During a P2P maneuver between a fuel-sufficient and a fuel-deficient satellite, one of them performs an orbital transfer to rendezvous with the other, exchanges fuel, and then returns back to its original orbital position. In terms of fuel expended during the refueling process, the mixed strategy outperforms the single service vehicle strategy, particularly with increasing number of satellites in the constellation. This dissertation looks at the problem of P2P refueling problem and proposes new extensions like the Cooperative P2P and Egalitarian P2P strategies. It presents an overview of the methodologies developed to determine the optimal set of orbital transfers required for cooperative and non-cooperative P2P refueling strategies. Results demonstrate that the proposed strategies help in reducing fuel expenditure during the refueling process.
4

Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission

Risi, Benjamin 04 July 2014 (has links)
The Canadian Nanosatellite Advanced Propulsion System is a liquefied cold-gas thruster system that provides propulsive capabilities to CanX-4/-5, the Canadian Advanced Nanospace eXperiment 4 and 5. With a launch date of early 2014, CanX-4/-5's primary mission objective is to demonstrate precise autonomous formation flight of nanosatellites in low Earth orbit. The high-level CanX-4/-5 mission and system architecture is described. The final design and assembly of the propulsion system is presented along with the lessons learned. A high-level test plan provides a roadmap of the testing required to qualify the propulsion system for flight. The setup and execution of these tests, as well as the analyses of the results found therein, are discussed in detail.

Page generated in 0.0868 seconds