• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 131
  • 86
  • 72
  • 25
  • 16
  • 12
  • 10
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 923
  • 527
  • 116
  • 99
  • 96
  • 89
  • 84
  • 68
  • 63
  • 62
  • 60
  • 49
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Single-Stage PFC Flyback Converter with Low Output Voltage Ripple

Hsiao, Li-yang 21 July 2009 (has links)
An auxiliary winding with an associated capacitor is added on the single-stage power factor corrector (PFC) based on fly-back conversion to reduce the ripple on the dc output voltage. The associated capacitor takes out partial energy at every switching cycle from the fly-back conversion and releases the stored energy to the load at the valley of the rectified line voltage. The negative effect of such an approach is that the converter does not draw a current from the AC line at the lower voltage near zero crossing, leading to deterioration in the power factor. This thesis analyzes how an auxiliary winding affects the voltage of the associated capacitor, which in turn changes the cut-in angle of the input current and thus the power factor of the AC source. To facilitate the implementation, the fly-back converter is operated at the boundary conduction mode (BCM). A design example is given for the 24 V, 48 W load, based on the derived equations. The laboratory circuit is built and tested to verify the computer simulations and analytical predictions. The experimental results confirm the circuit analyses on the converter performances.
392

pH Effect on the Arsenic Separation in Waste Water of Coal Based Power Plant

Hao, Ye 01 May 2010 (has links)
Arsenic (As) poses a significant water quality problem and it is a big challenge for all coal-based power plant industries worldwide. Currently most of the researches on the leaching behavior of arsenic from fly ash are based on the titration experiments. In this study a simulation method is used to study on the pH effect on the arsenic separation of coal-based power plants. Both single point and composition survey simulation of the OLI stream analyzer are used in the study. The simulation results of single point calculation indicates that for the fly ash which has high lime weight percent and equilibrium fly ash solution pH is over 11 and between 7 and 9, that is, Type C fly ash, the simulation results for equilibrium pH in fly ash solutions have great accuracy compared to actual experiment results. Based on the results obtained from single point simulation, both acid and base titrations of composition survey are simulated and the output results suggest that for the same type of fly ash, the simulation results proves the general trend of arsenic solubility in fly ash solutions. The solubility of arsenic decreases with the increase of pH value. It is also noted that at the equilibrium pH fly ash solutions, the maximum solid/liquid ratio of arsenic concentration is observed for type C fly ash. For other fly ashes which have low lime weight percent, the simulation results have discrepancy compared to actual experiment results. This work is important in offering an alternative way of analyze the reasonable output species and relative concentrations for type C fly ash in the waste water storage pond under specific pH conditions, which can be of great importance for the power plants to monitor and minimize the environment pollution in order to meet the future federal regulations.
393

Effect of constituent materials and curing methods on the abrasion resistance and durability of high performance concrete for pre-cast pre-stressed bridge deck slabs /

Keshari, Shweta. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 120-125). Also available on the World Wide Web.
394

Patched conic interplanetary trajectory design tool

Brennan, Martin James 15 February 2012 (has links)
One of the most important aspects of preliminary interplanetary mission planning entails designing a trajectory that delivers a spacecraft to the required destinations and accomplishes all the objectives. The design tool described in this thesis allows an investigator to explore various interplanetary trajectories quickly and easily. The design tool employs the patched conic method to determine heliocentric and planetocentric trajectory information. An existing Lambert Targeting routine and other common algorithms are utilized in conjunction with the design tool’s specialized code to formulate an entire trajectory from Earth departure to arrival at the destination. The tool includes many options for the investigator to accurately configure the desired trajectory, including planetary gravity assists, deep space maneuvers, and various departure and arrival conditions. The trajectory design tool is coded in MATLAB, which provides access to three dimensional plotting options and user adaptability. The design tool also incorporates powerful MATLAB optimization functions that adjust trajectory characteristics to find a configuration that yields the minimum spacecraft propellant in the form of change in velocity. / text
395

Nanoparticle-stabilized CO₂ foams for potential mobility control applications

Hariz, Tarek Rafic 21 November 2013 (has links)
Carbon dioxide (CO₂) flooding is the second most common tertiary recovery technique implemented in the United States. Yet, there is huge potential to advance the process by improving the volumetric sweep efficiency of injected CO₂. Delivering CO₂ into the reservoir as a foam is one way to do this. Surfactants have traditionally been used to generate CO₂ foams for mobility control; however, the use of nanoparticles as a foam stabilizing agent provides several advantages. Surfactant-stabilized foams require constant regeneration to be effective, and the surfactant is adsorbed onto reservoir rocks and is prone to chemical degradation at harsh reservoir conditions. Nanoparticle-stabilized foams have been found to be tolerant of high temperature and high salinity environments. Their nano size also allows them to be transported through reservoir rocks without blocking pore throats. Stable CO₂-in-water foams were generated using 5 nm silica nanoparticles with a short chain polyethylene glycol surface coating. These foams were generated by the co-injection of CO₂ and a nanoparticle dispersion through both rock matrix and fractures. A threshold shear rate was found to exist for foam generation in both fractured and non-fractured Boise sandstone cores. The ability of nanoparticles to generate foams only above a threshold shear rate is advantageous; in field applications, high shear rates are associated with high permeability zones, where the presence of foam is desired. Reducing CO₂ mobility in these high permeability zones diverts CO₂ into lower permeability regions containing not yet swept oil. Nanoparticles were also found to be able to stabilize CO₂ foams by co-injection through rough-walled fractures in cement cores, demonstrating their ability to stabilize foams without matrix flow. Experiments were conducted on the ability of fly ash, a waste product from burning coal in power plants, to stabilize oil-in-water emulsions and CO₂ foams. The use of fly ash particles as a foam stabilizing agent would significantly reduce material costs for potential tertiary oil recovery and CO₂ sequestration applications. Nano-milled fly ash particles without surface treatment were able to generate stable oil-in-water emulsions when high frequency, high energy vibrations were applied to a mixture of fly ash dispersion and dodecane. Oil-in-water emulsions were also generated by co-injecting fly ash and dodecane, a low pressure analog to CO₂, through a beadpack. Emulsions generated by co-injection, however, were unstable and coalesced within an hour. A threshold shear rate was required for the emulsion generation. Fly ash particles were found to be able to stabilize CO₂ foam in a high pressure batch mixing cell, but not by co-injection through a beadpack. Dispersions of fly ash particles were found to be stable only at low salinities (<1 wt% NaCl). / text
396

Evaluation of natural pozzolans as replacements for Class F fly ash in portland cement concrete

Cano, Rachel Irene 18 March 2014 (has links)
Most concrete produced today utilizes pozzolans or supplementary cementitious materials (SCMs) to promote better long term durability and resistance to deleterious chemical reactions. While other pozzolans and SCMs are available and provide many of the same benefits, Class F fly ash has become the industry standard for producing quality, durable concrete because of its low cost and wide-spread availability. With impending environmental and safety regulations threatening the availability and quality of Class F fly ash, it is becoming increasing important to find viable alternatives. This research aims to find natural, lightly processed, alternatives to fly ash that perform similarly to Class F fly ash with regards to pozzolanic reactivity and provide comparable compressive strength, workability, drying shrinkage, thermal expansion properties and resistance to alkali-silica reaction, sulfate attack, and chloride ion penetration. Eight fly ash alternatives from the US were tested for compatibility with the governing standard for pozzolans used in portland cement concrete and various fresh and hardened mortar and concrete properties. The results of this research indicate that six materials meet the requirements for natural pozzolans set by the American Society for Testing and Materials and many are comparable to Class F fly ash in durability tests. The primary concern when using these materials in concrete is the increase in water demand. The spherical particle shape of fly ash provides improved workability even at relatively low water-to-cement ratios; however, all of the materials tested for this research required grinding to achieve the appropriate particle size, resulting in an angular and rough surface area that requires more lubrication to achieve a workable consistency. So long as an appropriate water reducing admixture is used, six of the eight materials tested in this study are appropriate and beneficial for use in portland cement concrete. / text
397

Treatment of wastewater containing Melanoidin through simultaneous adsorption and biodegradation processes.

Ojijo, Vincent Omondi. January 2010 (has links)
M. Tech. Engineering : Chemical. / Evaluates the applicability of adsorption, biodegradation and hybrid adsorption and biodegradation system in treatment of wastewater containing melanoidin.Treatment of wastewater containing melanoidin through SAB process in fluidized bed bioreactor results in the best performance index as compared to adsorption and biodegradation processes undertaken singly. The synergies realized are more pronounced in fluidized bed bioreactor than in stirred tank system.
398

Complete Recycling and Utilization of Waste Concrete Through Geopolymerization

Ren, Xin January 2015 (has links)
This research investigates complete recycling and utilization of waste concrete to produce new structural concrete through geopolymerization. The investigation was conducted through both macro-and micro/nano-scale studies. First the geopolymer paste synthesized using a mixture of waste concrete fines (WCF) and class F fly ash (FA) as the source material and a mixture of NaOH solution (N) and Na2SiO3 solution (SS) as the alkaline activating agent was studied. Various NaOH concentrations, SS/N ratios, and WCF contents were used to produce geopolymer paste specimens in order to study their effect on the properties of the geopolymer paste. Uniaxial compression tests were conducted to measure the strength of the geopolymer paste specimens. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and Fourier transform infrared spectroscopy (FTIR) analyses were performed to investigate the micro/nano-structure, morphology and phase/surface elemental compositions of the geopolymer paste and the effect of calcium (Ca) on them. The results indicate that by using 10 M NaOH solution, SS/N of 2 and 50% WCF, the highest geopolymer paste strength can be obtained. Second, the interfacial transition zones (ITZs) between geopolymer (GP) and recycled aggregates (RA) were studied. Considering that RA consist of the stone particles and the attached paste/mortar from the original ordinary Portland cement (OPC) concrete, both the ITZs between GP and natural aggregate (NA) and those between GP and residual OPC paste/mortar (ROPM) were studied. For comparison, the ITZs between OPC paste and NA and those between OPC paste and ROPM were also investigated. 4-point bending tests were conducted to measure the bonding strength of the different types of ITZs at water to solid (W/S) ratio of 0.30, 0.35 and 0.40 for the geopolymer and OPC pastes after 7 and 14 days curing, respectively. SEM imaging was performed to investigate the microstructure of the ITZs. The results indicate that when NA is used, the bonding strength of both the GP-NA and OPC-NA ITZs decreases with higher water to solid (W/S) ratio. When ROPM is used, higher W/S ratio leads to smaller bonding strength for the GP-ROPM ITZ but greater bonding strength for the OPC-ROPM ITZ. Based on the measured bonding strength values for NA- and ROPM-based ITZs, the bonding strength of the GP-RA and OPC-RA ITZs was estimated by considering the average area coverage of ROPM on the RA surface. The GP-RA ITZ has the highest bonding strength among the different ITZs, implying the great potential for utilizing waste concrete (both the WCF and the RA) to produce geopolymer concrete. Third, based on the studies on geopolymer paste and ITZs, geopolymer concrete (GPC) was produced and studied using WCF and FA as the cementitious material and RA as the aggregate. For comparison, GPC using NA was also produced and studied at similar conditions. Various NaOH concentrations, SS/N ratios, and cement (WCF and FA) to aggregate (C/A) ratios were used to produce GPC specimens in order to study their effect on the behavior of GPC. The effect of water content and curing temperature on the initial setting time and 7-day unconfined compressive strength (UCS) of the GPC was also studied. The results show that the GPC produced from RA has higher UCS than the GPC from NA at both room curing temperature and 35°C curing temperature. Based on this study, it can be concluded that waste concrete can be completely recycled and used to produce new structural concrete based on the geopolymerization technology. Fourth, considering that the Si/Al and Na/Al ratios have great effect on the geopolymerization process and the properties of the final geopolymer product, a study was conducted on copper mine tailings (MT)-based geopolymer containing different amount of aluminum sludge (AS). The results indicate that by including AS and utilizing appropriate amount of NaOH, the UCS can be increased significantly. The main reason is because the addition of AS along with utilization of appropriate amount of NaOH makes both the Si/Al and Na/Al ratios reach the optimum values for geopolymerization, leading to higher degree of geopolymerization and more compact geopolymer microstructure. It is noted that although this study is not directly on waste concrete, it provides useful information for optimizing the design on complete recycling and utilization of waste concrete to produce new GPC. Finally, to better understand the effect of Ca on the geopolymerization process and the properties of geopolymer, molecular dynamics (MD) simulations were performed on geopolymer at different Ca contents. The molecular models at different Ca contents were constructed and uniaxial compression test was then performed on the numerical specimens. The results indicate that MD simulation is an effective tool for studying the effect of Ca on the properties of geopolymer at nano-scale.
399

Εκτίμηση της κινητικότητας ιχνοστοιχείων από δείγματα λιγνίτη, ιπτάμενης τέφρας, τέφρας εστίας και αποθέσεων σε όξινο, ουδέτερο καιι βασικό περιβάλλον

Ζηλάκου, Σταματίνα 01 October 2008 (has links)
Οι μεγάλες ποσότητες ιπτάμενης τέφρας και τέφρας εστίας που παράγονται κατά την καύση του χαμηλής ποιότητας λιγνίτη, όπως είναι ο λιγνίτης της Μεγαλόπολης, περιέχουν διάφορα τοξικά στοιχεία, όπως Cd, Co, Ni, Pb, Zn, τα οποία είναι δυνατό να εκπλυθούν και να ρυπάνουν το έδαφος, το επιφανειακό και το υπόγειο νερό. Σκοπός της παρούσας εργασίας είναι να εκτιμηθεί η κινητικότητα των ιχνοστοιχείων και η δυνατότητα έκπλυσής τους κάτω από συνθήκες διαφορετικών pH (3, 5, 7 και 8,5). Αντικείμενο της εργασίας αποτελεί η γεωχημική μελέτη δειγμάτων λιγνίτη, ιπτάμενης τέφρας, τέφρας εστίας και αποθέσεων. Οι εργαστηριακές εξετάσεις περιελάμβαναν προσεγγιστική και άμεση ανάλυση, καθώς και στοιχειακή ανάλυση με φασματομετρία ατομικής απορρόφησης φλόγας. Ακολούθησαν πειράματα απόπλυσης και προσδιορισμός των εκπλυομένων ιχνοστοιχείων As, Β, Ba, Be, Cd, Co, Cr, Cu, Ga, Ge, Hf, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Yb, Zn, Zr µε φασµατοµετρία μάζας επαγωγικού ζεύγους πλάσματος. Επίσης, προκειμένου να εκτιμηθεί η πτητικότητα των ιχνοστοιχείων κατά την καύση, υπολογίστηκε ο συντελεστής εμπλουτισμού. Για τη στατιστική επεξεργασία των αποτελεσμάτων εφαρμόστηκε η μέθοδος της παραγοντικής ανάλυσης τύπου R στα ποσοστά έκπλυσης των ιχνοστοιχείων. Από τις εργαστηριακές αναλύσεις προέκυψε ότι ο λιγνίτης και οι τέφρες περιείχαν υψηλότερα ποσοστά σε Ca και Fe έναντι των K, Mg και Na. Όσον αφορά στα ιχνοστοιχεία, ο λιγνίτης εμφανίζει υψηλές περιεκτικότητες σε Ba, Mn, P, Sr, Ti, ενώ οι τέφρες παρουσιάζονται εμπλουτισμένες σε αυτά τα ιχνοστοιχεία, με εξαίρεση το Ba, και επιπλέον σε Cr, Mo, Ni, V. Με βάση τους συντελεστές εμπλουτισμού, τα ιχνοστοιχεία B, Ba, Li, Rb, Sn εμφανίζονται ιδιαίτερα πτητικά. Μέτρια πτητικότητα παρατηρείται για τα As, Cd, Ga, Mo, Ni, P, Pb, Sb, Sc, Sr, Ta, W, Zn, ενώ τα Be, Co, Cr, Cu, Ge, Hf, Mn, Nb, Th, Ti, U, V, Y, Yb, Zr χαρακτηρίζονται ως μη πτητικά. Ως προς την κινητικότητα των ιχνοστοιχείων, τα μεγαλύτερα ποσοστά έκπλυσης εμφανίζουν τα Cd, Mo, Rb, Sb, Sr. Μέτρια κινητικότητα παρατηρείται για τα As, B, Ba, Cr, Ga, Li, Mn, P, U, V, W, ενώ αρκετά δυσκίνητα παρουσιάζονται τα Be, Co, Cu, Ge, Hf, Nb, Ni, Pb, Sc, Sn, Ta, Th, Ti, Y, Yb, Zn, Zr. Γενικά, σε όλες τις τιμές pH, τα As, Co, Cr, Cu, Mn, Ρ, Th δείχνουν μία προτίμηση έκπλυσης από το λιγνίτη, ενώ τα Ba, Li, Mo, Rb, Sr, V από την ιπτάμενη τέφρα. Η κινητικότητα των B, Cd, Ga, Ge, Sb, U, W αυξάνεται στα δείγματα της τέφρας εστίας, ενώ στις αποθέσεις δεν παρατηρείται κοινή τάση έκπλυσης για κάποια ιχνοστοιχεία. / The great quantity of fly and bottom ash produced during the combustion of high-ash lignite, like the Megalopolis lignite, are rich in toxic elements, such as Co, Cd, Ni, Pb, Zn; these can be leached resulting in contamination of the soil, as well as of the surface and underground water. The aim of this study is to estimate the mobility of trace elements and the leaching possibility from ash in different pH values (3, 5, 7 and 8.5). The object of the current study is the geochemical analyses of samples from bulk lignite, fly ash, bottom ash and ash deposits. Lignite and ash samples were evaluated by means of proximate and ultimate analysis, as well as by determining the concentrations of elements using FAAS. ICP-MS analyses were carried out in order to determine the contents of the trace elements As, Β, Ba, Be, Cd, Co, Cr, Cu, Ga, Ge, Hf, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Ti, U, V, W, Y, Yb, Zn, Zr in leachates. Furthermore, to approach the volatility of trace elements during combustion, the relative enrichment factor (RE) was calculated. For statistical reason, the type R factor analysis was applied in the leaching percentage of trace elements. The results reveal that the Ca and Fe contents were higher than these of K, Mg and Na in the lignite and ash samples. As far as trace elements are concerned, the lignite shows higher Ba, Mn, P, Sr, Ti contents, while the ashes are enriched in Cr, Mn, Mo, Ni, P, Sr, Ti, V. Boron, Ba, Li, Rb, Sn appear to be the most volatile elements, while As, Cd, Ga, Mo, Ni, P, Pb, Sb, Sc, Sr, Ta, W, Zn show a medium volatility. Likewise, Be, Co, Cr, Cu, Ge, Hf, Mn, Nb, Th, Ti, U, V, Y, Yb, Zr are not volatile during combustion. Cadmium, Mo, Rb, Sb, Sr reveal the highest mobility. Medium mobility is observed in As, B, Ba, Cr, Ga, Li, Mn, P, U, V, W, while Be, Co, Cu, Ge, Hf, Nb, Ni, Pb, Sc, Sn, Ta, Th, Ti, Y, Yb, Zn, Zr are not mobile. Generally, in all pH values, As, Co, Cr, Cu, Mn, Ρ, Th are leached from lignite and Ba, Li, Mo, Rb, Sr, V from fly ash. The mobility of B, Cd, Ga, Ge, Sb, U and W is higher in bottom ash samples, while such behavior is not common in the ash deposits for any elements.
400

Development of Strategies to Minimize the Release of Trace Elements from Coal Waste Sources

Rezaee, Mohammad 01 January 2012 (has links)
To assess strategies aimed at minimizing the release of trace elements and the impact of disposal of coal waste materials on the environment, two long-term leaching experiments of up to five months duration were performed using waste materials from two plants cleaning high and low sulfur bituminous coal. The tests evaluated the mobility of major trace elements under different disposal scenarios: (i) a static leaching test designed to simulate the quiescent conditions encountered by coal waste material stored under water in a stable impoundment, and (ii) a dynamic test to simulate waste materials exposed to the atmosphere, either in variable wet/dry storage conditions, or in unusual circumstances like those resulting from breaching of an impoundment containment wall. The results indicate that different refuse streams have different leaching characteristics due to difference in their mineralogy and the mobility of most elements is enhanced under highly alkaline or acidic conditions with a few being mobilized under both conditions, suggesting that the minimization of element mobility requires the pH value of the medium to be maintained around neutral. In addition, most of heavy metals were associated with the illite and pyrite minerals. Two strategies of treating coal refuse were evaluated: fly ash mixed with coarse refuse and co-disposal of coarse and fine refuse. Both methods were found to neutralize the pH conditions and thus reduce mobility of the trace elements in static leaching tests whereas the opposite was found from dynamic experiments. The results indicate that such controlled storage under water could retard acid generation and the mobility of trace elements.

Page generated in 0.0318 seconds