• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 131
  • 86
  • 72
  • 25
  • 16
  • 12
  • 10
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 923
  • 527
  • 116
  • 99
  • 96
  • 89
  • 84
  • 68
  • 63
  • 62
  • 60
  • 49
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Genetic diversity of wheat wild relative, Aegilops tauschii, for wheat improvement

Singh, Narinder January 1900 (has links)
Doctor of Philosophy / Genetics Interdepartmental Program / Jesse A. Poland / Wheat is perhaps the most important component in human diet introduced since the conception of modern agriculture, which provides about 20% of the daily protein and calorie intake to billions of people. Adaptable to wide range of climates, wheat is grown worldwide, lending it the potential to mitigate the imminent risk of food security for future population of 9.5 billion people. For developing improved crop varieties in the future, genetic diversity is a key factor in plant breeding. Constraints in wheat evolution and artificial selection practices have resulted in erosion of this ingredient in elite germplasm. However, wheat wild relatives, such as Ae. tauschii, D-genome donor of wheat, are a storehouse for unexploited genetic diversity that can be used for improving wheat for disease and insect resistance, yield, quality, and tolerance to abiotic stresses. More than 1700 genebanks around the world hold over 7 million accessions of these wild relatives. These genebanks are expensive to maintain, therefore, efficient curation is necessary. We developed and implemented a protocol to identify duplicate accessions using genomic tools. Implementing this approach with three genebanks, we identified over 50% duplicated accessions across genebanks. There are over a million Triticeae accessions held collectively, and it is likely as more number of genebanks are tested, there will be decreasing number of unique accessions. Selecting and utilizing the wild genetic diversity is no easy task. Historically, breeders and geneticists have chosen the accessions primarily based on associated phenotypic data. Unless focusing on a targeted trait, this practice is imperfect in capturing the genetic diversity with some other limitations, such as confounding phenotypic data with the testing environment. Utilizing next-generation sequencing methods, we selected a MiniCore consisting of only 40 accessions out of 574 capturing more than 95% of the allelic diversity. This MiniCore will facilitate the use of genetic diversity present in Ae. tauschii for wheat improvement including resistance to leaf rust, stem rust, Hessian fly, and tolerance to abiotic stresses. Hessian fly is an important insect pest of wheat worldwide. Out of 34 known resistance genes, only six have been mapped on the D sub-genome. With swift HF evolution, we need to rapidly map and deploy the resistance genes. Some of the undefeated HF resistance genes, such as H26 and H32, were introgressed from Ae. tauschii. In this study, we mapped three previously known genes, and a new gene from Ae. tauschii accession KU2147. Genes were mapped on chromosomes 6B, 3D, and 6D. Further, identification and cloning of resistance genes will enhance our understanding about its function and mode of action. In conclusion, wild wheat relatives are genetically diverse species, and utilizing the novel genetic diversity in Ae. tauschii will be fruitful for wheat improvement in the wake of climate change to ensure future food security to expected 2 billion newcomers by 2050.
452

Time Dependent Rheological Response of Composite Binders

January 2016 (has links)
abstract: The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems. The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were evaluated for all the design mixtures to fundamentally understand the synergistic effects of the SCM. A time-dependent study was conducted on these blends to explore the structure formation at various time intervals which explains the effect of hydration in conjecture to its physical stiffening. The second phase focuses on the rheological characterization of novel iron powder based binder system. The results of this work indicate that the rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, inter-particle forces, shape of the particle, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended. Chemical composition and reactivity of the material play an important role in the time-dependent rheological study. A stress plateau method is utilized for the determination of rheological properties of concentrated suspensions, as it better predicts the apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions. Plastic viscosity is obtained by calculating the slope of the stress-strain rate curve of ramp down values of shear rates. In oscillatory stress measurements the plateau obtained within the linear visco-elastic region was considered to be the value for storage modulus. Between the different types of fly ash, class F fly ash indicated a reduction in the rheological parameters as opposed to class C fly ash that is attributable to the enhanced ettringite formation in the latter. Use of superplasticizer led to a huge influence on yield stress and storage modulus of the paste due to the steric hindrance effect. In the study of iron based binder systems, metakaolin had comparatively higher influence than fly ash on the rheology due to its tendency to agglomerate as opposed to the ball bearing effect observed in the latter. Iron increment above 60% resulted in a decrease in all the parameters of rheology discussed in this thesis. In the OPC-iron binder, the iron behaved as reinforcements yielding higher yield stress and plastic viscosity. / Dissertation/Thesis / Masters Thesis Civil Engineering 2016
453

Multiscale Engineering Response of Alkali Activated Aluminosilicate Binders

January 2016 (has links)
abstract: Sustainable materials and methods have achieved a pivotal role in the research plethora of the new age due to global warming. Cement production is responsible in contributing to 5% of global CO2 emissions. Complete replacement of cement by alkaline activation of aluminosilicate waste materials such as slag and fly ash is a major advancement towards reducing the adverse impacts of cement production. Comprehensive research has been done, to understand the optimized composition and hydration products. The focus of this dissertation is to understand the multiscale behavior ranging from early age properties, fundamental material structure, fracture and crack resistance properties, durability responses and alternative activation methods to existing process. The utilization of these materials has relied primarily on the dual benefits of reduced presence in landfills and cost. These have also proven to yield a higher service life as opposed to conventional ordinary portland cement (OPC) concrete due to an enhanced microstructure. The use of such materials however has not been readily acceptable due to detrimental early age behavior. The influence of design factors is studied to understand the reaction mechanism. Silicon polymerization at the molecular level is studied to understand the aluminosilicate interactions which are responsible for prevention of any leaching of ions. A comparative study between fly ash and slag binders is carried out to evaluate the stable states of sodium, aluminum and silicon in both these binders, since the likelihood of the sodium ions leaching out is high. Compressive and flexural strength have been reported in previous literature, but the impact of crack resistance was unevaluated from an approach of characterizing the fracture process zone. Alternative routes of activation are explored with an intent to reduce the high alkalinity by use of neutral salts such as sodium sulfate. High volume OPC replacement by both class C and F fly ash is performed to evaluate the differences in hydration phase formation responsible for its pore refinement and strength. Spectroscopic studies have also allowed to study the fundamental material structure. Durability studies are also performed on these samples to understand the probability external sulfate attacks as opposed to OPC mixes. / Dissertation/Thesis / Doctoral Dissertation Engineering 2016
454

Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), smart-trap design and deployment strategies

Schmid, Ryan B. January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Brian P. McCornack / Timely enactment of insect pest management and incursion mitigation protocols requires development of time-sensitive monitoring approaches. Numerous passive monitoring methods exist (e.g., insect traps), which offer an efficient solution to monitoring for pests across large geographic regions. However, given the number of different monitoring tools, from specific (e.g., pheromone lures) to general (e.g., sticky cards), there is a need to develop protocols for deploying methods to effectively and efficiently monitor for a multitude of potential pests. The non-random movement of the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), toward several visual, chemical, and tactile cues, makes it a suitable study organism to examine new sensor technologies and deployment strategies that can be tailored for monitoring specific pests. Therefore, the objective was to understand Hessian fly behavior toward new sensor technologies (i.e., light emitting diodes (LEDs) and laser displays) to develop monitoring and deployment strategies. A series of laboratory experiments and trials were conducted to understand how the Hessian fly reacts to the technologies and how environmental factors may affect the insect’s response. Hessian fly pupae distribution within commercial wheat fields was also analyzed to determine deployment of monitoring strategies. Laboratory experiments demonstrated Hessian fly attraction to green spectrum (502 and 525 nm) light (LEDs), that response increased with light intensity (16 W/m2), and that they responded in the presence of wheat odor and the Hessian fly female sex-pheromone, but, response was reduced under ambient light. These laboratory experiments can be used to build a more targeted approach for Hessian fly monitoring by utilizing the appropriate light wavelength and intensity with pheromone and wheat odor to attract both sexes, and mitigating exposure to ambient light. Together this information suggested that light could be used with natural cues to increase attraction. Therefore, a light source (green laser display) was applied to a wheat microcosm, which resulted in greater oviposition in wheat covered by the laser display. Examination of Hessian fly pupal distribution within commercial wheat fields showed that proportion of wheat within a 1 km buffer of the field affected distribution between fields. This helps to inform deployment of monitoring strategies as it identified fields with a lower proportion of wheat within a 1 km buffer to be at higher risk Hessian fly infestation, and therefore monitoring efforts should be focused on those fields. Together this work demonstrates Hessian fly behavior toward new sensor technologies, how those technologies interact with environmental cues, and how environmental composition affects pupal distribution. Collectively this information will enable cheaper, more accurate and more efficient monitoring of this destructive pest.
455

Controle térmico de mosca-das-frutas (Ceratitis capitata) (Wied.) em frutos da cajazeira (Spondias mombin L.) / Thermal control of fruits flies (Ceratitis capitata) in Spondias mombin

Brito, Carlos Henrique de 30 April 2007 (has links)
Submitted by Katiane Souza (katyane.souza@gmail.com) on 2016-04-09T22:48:29Z No. of bitstreams: 1 arquivototal.pdf: 1690588 bytes, checksum: 301426ac3ef435d5f993aa9eeca78c01 (MD5) / Made available in DSpace on 2016-04-09T22:48:29Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1690588 bytes, checksum: 301426ac3ef435d5f993aa9eeca78c01 (MD5) Previous issue date: 2007-04-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The fruits flies cause large damages for world fruticulture, much for the damages direct of the infestation in the fruits, how much for the indirect damages with fruits exportation prohibition. Considering crescent demand of importation countries and Brazil potentialities for attempt, it was has been required establishment of favorable conditions for exportation sector development, as well higher exigency of quality for product by consumer. Quarantine treatment for fruits disinfestations includes priority physical methods, applicable by simple form or in combination. Among those, are important vapour and hot water, because showed many vantages on chemical control, but important obstacle to heat treatment for postharvest fruits control against insects infestation in fruits susceptibility at temperature and time required for effective treatment, no affecting physiology and fruits quality. Treatments based on heat use, constituted alternatives applicable on tropical fruits by possibility disinfestations and simultaneous control of insects and pathogens. / As moscas-das-frutas causam enormes prejuízos à fruticultura mundial, tanto pelos danos diretos da infestação nos frutos, quanto pelos danos indiretos com o embargo às exportações de frutas. Em face da crescente demanda dos países importadores e da potencialidade do Brasil para atendêla, vem sendo requerido o estabelecimento de condições favoráveis ao desenvolvimento do setor de exportação, assim como também maior exigência de qualidade do produto pelo consumidor. O tratamento quarentenário visando a desinfestação de frutas inclui prioritariamente métodos físicos, aplicados de forma simples ou combinada. Dentre esses métodos destacam-se o vapor e a água quente, por apresentar inúmeras vantagens sobre o controle químico, porém o principal obstáculo ao uso do calor para controle pós-colheita de frutos contra a infestação de insetos é a suscetibilidade de muitos frutos à temperatura e os tempos requeridos para um tratamento efetivo, sem afetar a fisiologia e a qualidade dos frutos. Os tratamentos baseados no emprego de calor, constituem alternativas aplicáveis a fruteiras tropicais pelo fato de possibilitarem a desinfestação e o controle simultâneo de insetos e patógenos.
456

Síntese e caracterização de Zeólita pura obtida a partir de cinzas volantes de carvão / Synthesis and characterization of pure zeolite obtained from coal fly ashes

IZIDORO, JULIANA de C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:55Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
457

Estudos sobre a adsorção do corante reativo preto 5 de solução aquosa usando zeólita de cinza de carvão / Studies on the adsorption of reactive black 5 dye of aqueous solution using zeolite of the coal ashes

FERREIRA, PATRICIA C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:33:31Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:36Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
458

Mobilidade de As, Cd, Mo, Pb e Zn em colunas de latossolo argiloso com cinza de carvão e contaminação do solo / Mobility of As, Cd, Mo, Pb and Zn in clayey oxisol columns with coal fly ash and soil contamination

SILVA, JULIANA C. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:13Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:59Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
459

Investigation of some scale-up conditions on the synthesis of faujasite zeolites from South African coal fly ash

Brassell, James Philip January 2017 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017. / Coal fly ash waste produced from the coal combustion process is becoming an ever increasing concern. It is produced in such abundance due to not only South Africa, but the whole of the world relying mainly on coal combustion for the main source of energy production. With the growing rate of the human population this energy production is ever increasing. The current methods of disposal of this fly ash is not sustainable, it is being dumped in ash dumps, and poses a risk to the surrounding environment and human population. Therefore, processes need to be developed to take this waste and turn it into useful materials. This would not only solve the problem of its disposal but also create useful products that can be applied to further protect the environment. It was discovered that one of the useful materials that can be synthesised from fly ash are zeolites. These nano-porous structures have a wide variety of uses. Therefore, many studies have been conducted around optimising the synthesis of various zeolites from coal fly ash. More recently these studies have focused on the scale-up conditions needed to synthesise these zeolites on the large industrial scale, regarding the sheer volume of fly ash produced annually. The most robust and widely used technique for zeolite synthesis involves a pre-synthesis fusion of the fly ash with sodium hydroxide at a temperature of 550 0C. This would not be feasible to scale-up to industrial scale because of the energy intensity. Therefore, alternative pre-synthesis techniques have been proposed. One of those techniques involves using a sonochemical treatment as a pre-synthesis. It can be argued that this technique may not be able to be easily scaled. To solve this problem, another alternative technique was investigated within this study. It involves the use of a jet loop pilot plant mixing system, which can be scaled-up very readily to industrial scale.
460

Obtenção de zeólitas a partir de cinzas de carvão mineral visando à aplicação em adsorção de SO2

Pedrolo, Débora Regina Strossi January 2017 (has links)
Cinzas de carvão mineral são resíduos gerados em grandes quantidades nas usinas termelétricas. Este é um dos resíduos de maior geração no Brasil, aproximadamente 1,7 milhões de toneladas por ano. A disposição muitas vezes irregular deste resíduo pode causar problemas de ordem ambiental, como contaminação de águas subterrâneas, do solo e desequilíbrio de sistemas ecológicos. Uma possibilidade de uso para estas cinzas é a síntese de zeólitas, que são minerais aluminossilicatos microporosos com propriedades interessantes para uso na indústria. Neste trabalho, estudou-se a síntese de zeólitas a partir de cinzas volantes visando à sua aplicação em dessulfuração de gases. A síntese foi realizada pelo método hidrotérmico, utilizando solução alcalina de KOH e relação solução/sólido de 2 mL g-1. As variáveis estudadas foram temperatura (100 e 150 °C), concentração da solução alcalina (3 e 5 mol L-1) e tempo de reação (8, 24, 48 e 72 h). Os produtos obtidos e as cinzas precursoras foram caracterizados quanto à composição química (FRX), mineralógica (DRX), morfológica (MEV), área específica (BET) e capacidade de troca catiônica (CTC). A partir da determinação das estruturas cristalinas (DRX) foi possível identificar a formação das zeólitas merlinoíta e perlialita em algumas das condições investigadas. O maior valor de área específica BET foi de 102,42 m2 g-1, nas condições de síntese de 150 °C, 5 mol L-1 e 72 h, representando um aumento de 30 vezes em relação à área das cinzas. Os valores de capacidade de troca catiônica ficaram entre 0,71 e 2,02 meq NH4+ g-1 para as diferentes condições estudadas. Com as amostras que apresentaram os melhores resultados nas caracterizações foram realizados testes de dessulfuração e seu desempenho foi comparado com as cinzas precursoras, carvão ativado e zeólita comercial. Foram construídas curvas de ruptura e isotermas de adsorção para esses sistemas. As zeólitas sintetizadas a partir das cinzas apresentaram maiores valores de adsorção máxima. A zeólita que apresentou melhor resultado de adsorção foi a sintetizada nas condições de 150 °C, 5 mol L-1 e 72 h de tempo de reação, sendo esta também a que apresentou maior valor de área específica. Sendo assim, a síntese de zeólitas a partir de cinzas de carvão, geradas no próprio processo de combustão em usinas térmicas, mostra-se como uma potencial aplicação no sentido de que estas podem ser utilizadas na própria usina para adsorção do SO2 gerado durante a combustão. / Coal ash is a waste generated in large quantities in the power plants. This is one of the wastes generated in larger quantities in Brazil, approximately 1.7 million tons per year. The often irregular disposal of this waste can cause environmental problems, such as contamination of groundwater, soil and imbalance of ecological systems. One possibility for using ashes is the synthesis of zeolites, which are microporous aluminosilicate minerals with interesting properties for use in industry. In this work, the synthesis of zeolites from fly ash was studied, aiming its application for gas desulfurization. The synthesis was performed by the hydrothermal method using an alkaline solution of KOH and a solution/solid ratio of 2 mL g-1. The variables temperature (100 and 150 °C), alkaline solution concentration (3 and 5 mol L-1) and reaction time (8, 24, 48 and 72 hours) were studied. The products obtained and the precursory ashes were characterized by its chemical composition (FRX), mineralogical (XRD), morphological (SEM), specific surface area (BET) and cation exchange capacity (CEC). From the determination of the crystalline structures (XRD) it was possible to identify the formation of the merlinoite and perlialite zeolites for some of the investigated conditions. The highest BET surface area was 102.42 m2 g-1 under the synthesis conditions of 150 °C, 5 mol L-1 and 72 hours. This value represented an increase of 30 times in the surface area comparing to the ash. The cation exchange capacity values varied between 0.71 and 2.02 meq NH4+ g-1 for the different conditions studied. Desulfurization tests were carried out for the samples that showed the best characterization results and its performance was compared with the precursor ash, activated carbon and commercial zeolite. Rupture curves and adsorption isotherms were constructed for these systems. The zeolites synthesized from ash showed higher values of maximum adsorption. The zeolite that showed the best adsorption result was synthesized at the conditions of 150 °C, 5 mol L-1 and 72 hours of reaction time, which also had the highest surface area value. Thus, the synthesis of zeolites from coal ash, generated in the combustion process in thermal plants, is shown as a potential application in the sense that these can be used in the plant to adsorb SO2 generated during combustion.

Page generated in 0.0318 seconds