Spelling suggestions: "subject:"aperating hours"" "subject:"boperating hours""
1 |
Electrical and Production Load FactorsSen, Tapajyoti 2009 December 1900 (has links)
Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector. The operating hours of small and medium sized manufacturing facilities are analyzed to identify the most common operating hour or shift work patterns. About 75% of manufacturing facilities fall into expected operating hour patterns with operating hours near 40, 80, 120 and 168 hours/week.
Two types of load factors, electrical and production are computed for each shift classification within major industry categories in the U.S. The load factor based on monthly billing hours (ELF) increases with operating hours from about 0.4 for a nominal one shift operation, to about 0.7 for around-the-clock operation. On the other hand, the load factor based on production hours (PLF) shows an inverse trend, varying from about 1.4 for one shift operation to 0.7 for around-the-clock operation. When used as a diagnostic tool, if the PLF exceeds unity, then unnecessary energy consumption may be taking place. For plants operating at 40 hours per week, the ELF value was found to greater than the theoretical maximum, while the PLF value was greater than one, suggesting that these facilities may have significant energy usage outside production hours. The data for the PLF however, is more scattered for plants operating less than 80 hours per week, indicating that grouping PLF data based on operating hours may not be a reasonable approach to benchmarking energy use in industries.
This analysis uses annual electricity consumption and demand along with operating hour data of manufacturing plants available in the U.S. Department of Energy’s Industrial Assessment Center (IAC) database. The annual values are used because more desirable monthly data are not available. Monthly data are preferred as they capture the load profile of the facility more accurately. The data there come from Industrial Assessment Centers which employ university engineering students, faculty and staff to perform energy assessments for small to medium-sized manufacturing plants. The nation-wide IAC program is sponsored by the U.S. Department of Energy.
|
2 |
En idealisk truckflotta hos Alfa Laval / An ideal forklift fleet at Alfa LavalKamil, Shems January 2022 (has links)
Denna rapport behandlade utvecklingen av ett uppföljningsverktyg vars syfte är att hålla koll på underhåll och användning av lastbilar som de ansvariga på distributionscentralen på Alfa Laval AB i Tumba kan använda för att ta fram den optimala lastbilsflottan. Studien analyserade även kostnader och drifttider. För att få fram undersökningens egentliga syfte, formulerades det fem olika frågeställningar. Ovanstående ärenden besvarades med hjälp av insamling av all relevant data, och av olika litteraturstudier där diverse källor analyserades och även jämfördes med varandra i syfte att skriva rapporten på så tillförlitliga grunder som möjligt. Resultatkapitlet innehåller alla relevanta svar, och dessa diskuterades i avsnittet efter. Resultaten och granskningen av dessa gav upphov till en slutsats som talar om att produktionen styr användningen av truckarna. Detta innebär i sin tur att det är produktionen som reglerar stilleståndstiden och drifttimmarna. / This paper covered the development of a follow-up tool in order to keep track of maintenance and use of trucks that those responsible at the distribution center at Alfa Laval AB in Tumba can use to produce the optimal truck fleet. The study also analyzed costs and operating times. In order to clarify the actual purpose of the survey, five different questions were formulated. The matters above were answered with the help of a collection of all relevant data, a literature study, and a comparison between the collected data with conclusions drawn from the literature study. The result contains all the relevant answers, being discussed in the subsequent section. The main conclusion is that it is the production that controls the use of the trucks. This in turn means that it is the production that regulates downtime and operating hours.
|
3 |
Economic Dispatch of the Combined Cycle Power Plant Using Machine LearningBhatt, Dhruv January 2019 (has links)
Combined Cycle Power Plant (CCPP)s play a key role in modern powersystem due to their lesser investment cost, lower project executiontime, and higher operational flexibility compared to other conventionalgenerating assets. The nature of generation system is changing withever increasing penetration of the renewable energy resources. Whatwas once a clearly defined generation, transmission, and distributionflow is shifting towards fluctuating distribution generation. Because ofvariation in energy production from the renewable energy resources,CCPP are increasingly required to vary their load levels to keep balancebetween supply and demand within the system. CCPP are facingmore number of start cycles. This induces more stress on the gas turbineand as a result, maintenance intervals are affected.The aim of this master thesis project is to develop a dispatch algorithmfor the short-term operation planning for a combined cyclepower plant which also includes the long-term constraints. The longtermconstraints govern the maintenance interval of the gas turbines.These long-term constraints are defined over number of EquivalentOperating Hours (EOH) and Equivalent Operating Cycles (EOC) forthe Gas Turbine (GT) under consideration. CCPP is operating in theopen electricity market. It consists of two SGT-800 GT and one SST-600 Steam Turbine (ST). The primary goal of this thesis is to maximizethe overall profit of CCPP under consideration. The secondary goal ofthis thesis it to develop the meta models to estimate consumed EOHand EOC during the planning period.Siemens Industrial Turbo-machinery AB (SIT AB) has installed sensorsthat collects the data from the GT. Machine learning techniqueshave been applied to sensor data from the plant to construct Input-Output (I/O) curves to estimate heat input and exhaust heat. Resultsshow potential saving in the fuel consumption for the limit on CumulativeEquivalent Operating Hours (CEOH) and Cumulative EquivalentOperating Cycles (CEOC) for the planning period. However, italso highlighted some crucial areas of improvement before this economicdispatch algorithm can be commercialized. / Kombicykelkraftverk spelar en nyckelroll i det moderna elsystemet pågrund av den låga investeringskostnaden, den korta tiden för att byggaett nytta kraftverk och hög flexibilitet jämfört med andra kraftverk.Elproduktionssystemen förändras i takt med en allt större andel förnybarelproduktion. Det som en gång var ett tydligt definierat flödefrån produktion via transmission till distribution ändrar nu karaktärtill fluktuerande, distribuerad generering. På grund av variationernai elproduktion från förnybara energikällor finns ett ökat behov avatt kombicykelkraftverk varierar sin elproduktion för att upprätthållabalansen mellan produktion och konsumtion i systemet. Kombicykelkraftverkbehöver startas och stoppas oftare. Detta medför mer stresspå gasturbinen och som ett resultat påverkas underhållsintervallerna.Syftet med detta examensarbete är att utveckla en algoritm för korttidsplaneringav ett kombicykelkraftverk där även driften på lång siktbeaktas. Begränsningarna på lång sikt utgår från underhållsintervallenför gasturbinerna. Dessa långsiktiga begränsningar definieras som antaletekvivalenta drifttimmar och ekvivalenta driftcykler för det aktuellakraftverket. Kombikraftverket drivs på den öppna elmarknaden.Det består av två SGT-800 GT och en SST-600 ångturbin. Det främstamålet med examensarbetet är att maximera den totala vinsten förkraftverket. Ett sekundärt mål är att utveckla metamodeller för attskatta använda ekvivalenta drifttimmar och ekvivalenta driftcyklerunder planeringsperioden.Siemens Industrial Turbo-machinery AB (SIT AB) har installeratsensorer som samlar in data från gasturbinerna. Maskininlärningsteknikerhar tillämpats på sensordata för att konstruera kurvor för attuppskatta värmetillförseln och avgasvärme. Resultaten visar en potentiellbesparing i bränsleförbrukningen om de sammanlagda ekvivalentadrifttimmarna och de sammanlagda ekvivalenta driftcyklernabegränsas under planeringsperioden. Det framhålls dock också att detfinns viktiga förbättringar som behövs innan korttidsplaneringsalgoritmenkan kommersialiseras.
|
Page generated in 0.1128 seconds