Spelling suggestions: "subject:"loptimisation combinatorial"" "subject:"doptimisation combinatorial""
241 |
An optimization-based framework for concurrent planning of multiple projects and supply chain : application on building thermal renovation projects / Une approche basée sur l'optimisation pour la planification simultanée de multi projets et réseaux logistique : application aux projets de la rénovation de bâtimentsGholizadeh Tayyar, Shadan 12 May 2017 (has links)
Le contexte d’application de cette recherche a été le projet CRIBA. CRIBA vise à industrialiser une solution intégrée de rénovation et d’isolation de grands bâtiments. De ce fait, une part importante de la valeur ajoutée est transférée des chantiers de rénovation vers des usines de fabrications devant être synchronisées avec les chantiers. La planification est l'une des étapes importantes de la gestion de projets. S’adaptant à une organisation, elle vise une réalisation optimale en considérant les facteurs de temps, coût, qualité ainsi que l’affectation efficace des ressources. Cette affectation est d’autant plus complexe lorsqu’un ensemble de projets se partagent les ressources, renouvelables ou non renouvelables. L'objectif global de notre étude est de développer un outil d’aide à la décision pour un décideur visant à planifier plusieurs projets en intégrant l'allocation des ressources renouvelables, et la planification des flux de ressources non-renouvelables vers ces projets. Dans ce cadre, les ressources non renouvelables telles que les machines et la main-d'œuvre ont une disponibilité initiale limitée sur les chantiers. Cependant, nous supposons que des quantités limitées supplémentaires peuvent être achetées. En outre, nous prenons en compte la volonté des coordinateurs des projets pour l’approvisionnement des chantiers en juste à temps (just in time), en particulier pour les ressources peu demandées, encombrantes et à forte valeur. Ceci oblige à étendre le cadre du modèle de la planification des projets en incluant la planification de la chaîne logistique qui approvisionne les ressources non renouvelables des chantiers. Enfin, pour répondre au besoin d’outils décisionnels responsables sur le plan environnemental, le modèle prévoit le transport et le recyclage des déchets des chantiers dans les centres appropriés. Un modèle linéaire mixte du problème est ainsi posé. Puisqu’il rentre dans la classe des modèles d'optimisation NP-durs, une double résolution est proposée. D’abord à l’aide d’un solveur puis une méta-heuristique basée sur un algorithme génétique. De plus, pour faciliter l'utilisation du modèle par des utilisateurs peu familiers avec la recherche opérationnelle, un système d'aide à la décision basé sur une application web a été développé. L’ensemble de ces contributions ont été évaluées sur des jeux de test issus du projet CRIBA. / The application context of the current study is on a CRIBA project. The CRIBA aims to industrialize an integrated solution for the insulation and thermal renovation of building complexes in France. As a result, a significant part of the added value is transferred from the renovation sites to the manufacturing centers, making both synchronized. Planning is one of the important steps in project management. Depending on the different viewpoints of organizations, successful planning for projects can be achieved by performing to optimality within the time, cost, quality factors as well as the efficient assignment of resources. Planning for the allocation of resources becomes more complex when a set of projects is sharing renewable and non-renewable resources. The global objective of the study is to develop a decision-making tool for decision-makers to plan multiple projects by integrating the allocation of the renewable resources and planning the flow of non-renewable resources to the project worksites. In this context, non-renewable resources such as equipment and labor have a limited initial availability at the construction sites. Nevertheless, we assume that additional limited amounts can be added to the projects. In addition, we take into account the interest of the project coordinators in supplying the non-renewable resources in a just-in-time manner to the projects, especially for low-demand resources with a high price. This requires extending the framework of the project planning by including the planning of the supply chain which is responsible. Finally, in order to meet the requirements for environmentally responsible decision-making, the model envisages the transportation and recycling of waste from project sites to appropriate centers. A mixed integer linear model of the problem is proposed. Since it falls within the class of NP-hard optimization models, a double resolution is targeted: first, using a solver and then a metaheuristic based on the genetic algorithm. In addition, in order to facilitate the use of the model by users unfamiliar with operational research, a web-based decision-making support system has been developed. All the contributions are evaluated in a set of case studies from the CRIBA project.
|
242 |
Optimisation par métaheuristique adaptative distribuée en environnement de calcul parallèle / Optimization by adaptive distributed heuristics in parallel computing environmentJankee, Christopher 31 August 2018 (has links)
Pour résoudre des problèmes d'optimisation discret de type boîte noire, de nombreux algorithmes stochastiques tels que les algorithmes évolutionnaires ou les métaheuristiques existent et se révèlent particulièrement efficaces selon le problème à résoudre. En fonction des propriétés observées du problème, choisir l'algorithme le plus pertinent est un problème difficile. Dans le cadre original des environnements de calcul parallèle et distribué, nous proposons et analysons différentes stratégies adaptative de sélection d'algorithme d'optimisation. Ces stratégies de sélection reposent sur des méthodes d'apprentissage automatique par renforcement, issu du domaine de l'intelligence artificielle, et sur un partage d'information entre les noeuds de calcul. Nous comparons et analysons les stratégies de sélection dans différentes situations. Deux types d'environnement de calcul distribué synchrone sont abordés : le modèle en île et le modèle maître-esclave. Sur l'ensemble des noeuds de manière synchrone à chaque itération la stratégie de sélection adaptative choisit un algorithme selon l'état de la recherche de la solution. Dans une première partie, deux problèmes OneMax et NK, l'un unimodal et l'autre multimodal, sont utilisés comme banc d'essai de ces travaux. Ensuite, pour mieux saisir et améliorer la conception des stratégies de sélection adaptatives, nous proposons une modélisation du problème d'optimisation et de son opérateur de recherche locale. Dans cette modélisation, une caractéristique importante est le gain moyen d'un opérateur en fonction de la fitness de la solution candidate. Le modèle est utilisé dans le cadre synchrone du modèle maître-esclave. Une stratégie de sélection se décompose en trois composantes principales : l'agrégation des récompenses échangées, la technique d'apprentissage et la répartition des algorithmes sur les noeuds de calcul. Dans une dernière partie, nous étudions trois scénarios et nous donnons des clés de compréhension sur l'utilisation pertinente des stratégies de sélection adaptative par rapport aux stratégies naïves. Dans le cadre du modèle maître-esclave, nous étudions les différentes façons d'agréger les récompenses sur le noeud maître, la répartition des algorithmes d'optimisation sur les noeuds de calcul et le temps de communication. Cette thèse se termine par des perspectives pour le domaine de l'optimisation stochastique adaptative distribuée. / To solve discrete optimization problems of black box type, many stochastic algorithms such as evolutionary algorithms or metaheuristics exist and prove to be particularly effective according to the problem to be solved. Depending on the observed properties of the problem, choosing the most relevant algorithm is a difficult problem. In the original framework of parallel and distributed computing environments, we propose and analyze different adaptive optimization algorithm selection strategies. These selection strategies are based on reinforcement learning methods automatic, from the field of artificial intelligence, and on information sharing between computing nodes. We compare and analyze selection strategies in different situations. Two types of synchronous distributed computing environment are discussed : the island model and the master-slave model. On the set of nodes synchronously at each iteration, the adaptive selection strategy chooses an algorithm according to the state of the search for the solution. In the first part, two problems OneMax and NK, one unimodal and the other multimodal, are used as benchmarks for this work. Then, to better understand and improve the design of adaptive selection strategies, we propose a modeling of the optimization problem and its local search operator. In this modeling, an important characteristic is the average gain of an operator according to the fitness of the candidate solution. The model is used in the synchronous framework of the master-slave model. A selection strategy is broken down into three main components : the aggregation of the rewards exchanged, the learning scheme and the distribution of the algorithms on the computing nodes. In the final part, we study three scenarios, and we give keys to understanding the relevant use of adaptive selection strategies over naïve strategies. In the framework of the master-slave model, we study the different ways of aggregating the rewards on the master node, the distribution of the optimization algorithms of the nodes of computation and the time of communication. This thesis ends with perspectives in the field of distributed adaptive stochastic optimization.
|
243 |
Modèles et méthodes pour la gestion logistique optimisée dans le domaine des services et de la santé / Models and optimization approaches for logistic problems in health care systems and services sectorAit Haddadene, Syrine Roufaida 30 September 2016 (has links)
Cette thèse aborde le problème de tournées de véhicules (VRP) intégrant des contraintes temporelles : fenêtres de temps (TW), synchronisation (S) et précédence (P), appliqué au secteur de soins à domicile, donnant le VRPTW-SP. Il s’agit d’établir un plan de visite journalier des soignants, aux domiciles des patients ayant besoin d’un ou plusieurs services. Tout d’abord, nous avons abordé ce problème sous angle mono-objectif. Ensuite, le cas bi-objectif est considéré. Pour la version mono-objectif, un Programme Linéaire à Variables Mixtes Entières (PLME), deux heuristiques constructives, deux procédures de recherches locales et trois métaheuristiques à base de voisinages sont proposés : une procédure de recherche constructive adaptative randomisée (GRASP), une recherche locale itérée (ILS) et une approche hybride (GRASP × ILS). Concernant le cas bi-objectif, différentes versions de métaheuristiques évolutionnaires multi-objectifs sont proposées, intégrant différentes recherches locales : l’algorithme génétique avec tri par non-dominance version 2 (NSGAII), une version généralisée de ce dernier avec démarrages multiples (MS-NSGAII) et une recherche locale itérée avec tri par non-dominance (NSILS). Ces algorithmes ont été testés et validés sur des instances adaptées de la littérature. Enfin, nous avons étendu le VRPTW-SP sur un horizon de planification, donnant le VRPTW-SP multi-période. Pour résoudre cette extension, un PLME ainsi qu’une matheuristique sont proposés / This work addresses the vehicle routing problem (VRP) including timing constraints: time windows (TW), synchronization (S) and precedence (P), applied in Home Health Care sector; giving the VRPTW-SP. This problem consists in establishing a daily caregivers planning to patients' homes asking for one or several services. We have started by considering the problem as a single objective case. Then, a bi-objective version of the problem is introduced. For solving the single-objective problem, a Mixed Integer Linear Program (MILP), two constructive heuristics, local search procedures and three local search based metaheuristics are proposed : a Greedy Randomized Adaptive Search procedure (GRASP), an Iterated Local Search (ILS) and a hybrid approach (GRASP × ILS). Regarding the bi-objective VRPTW-SP, different versions of multi-objective evolutionary algorithm, including various local research strategies are proposed: the Non-dominated Sorting Genetic Algorithm version 2 (NSGAII), a generalized version of this latter with multiple restarts (MS-NSGAII) and an Iterated Local Search combined with the Non-dominated Sorting concept (NSILS). All these algorithms have been tested and validated on appropriate instances adapted from the literature. Finally, we extended the VRPTW-SP on a multi-period planning horizon and then proposed a MILP and a matheuristic approach
|
244 |
Connaissance inter-entreprises et optimisation combinatoire / Inter-companies knowledge and combinatorial optimizationOuld Mohamed Lemine, Mohamed 17 June 2014 (has links)
La connaissance inter-entreprises permet à chaque société de se renseigner sur ses clients, ses fournisseurs et de développer son activité tout en limitant le risque lié à la solvabilité ou retard de paiement de ses partenaires. Avec les tensions de trésorerie, la nécessité de la croissance et l'augmentation de la concurrence, ce domaine devient plus que jamais stratégique aussi bien pour les PME que pour les grands groupes. La quantité de données traitée dans ce domaine, les exigences de qualité et de fraîcheur, la nécessité de croiser ces données pour déduire des nouvelles informations et indicateurs, posent plusieurs problèmes pour lesquels l'optimisation en général et l'optimisation combinatoire en particulier peuvent apporter des solutions efficaces. Dans cette thèse, nous utilisons l'optimisation combinatoire, l'algorithmique du texte et la théorie des graphes pour résoudre efficacement des problèmes issus du domaine de la connaissance inter-entreprises et posés par Altares D&B. Dans un premier temps, nous nous intéressons à la qualité de la base de données des dirigeants. Ce problème combine la détection et suppression des doublons dans une base de données et la détection d'erreurs dans une chaîne de caractères. Nous proposons une méthode de résolution basée sur la normalisation des données et l'algorithmique de texte et de comparaison syntaxique entre deux chaînes de caractères. Les résultats expérimentaux montrent non seulement que cette méthode est pertinente dans la détection et la suppression des doublons mais aussi qu'elle est efficace de point du vue temps de traitement. Nous nous focalisons par la suite sur les données des liens capitalistiques et nous considérons le problème de calcul des liens indirects et l'identification des têtes des groupes. Nous présentons une méthode de résolution basée sur la théorie des graphes. Nous testons cette méthode sur plusieurs instances réelles. Nous prouvons l'efficacité de cette méthode par son temps de traitement et par l'espace de calcul qu'elle utilise. Enfin, nous remarquons que le temps de calcul de celui-ci augmente de façon logarithmique en fonction de la taille d'instance. Enfin, nous considérons le problème de l'identification des réseaux d'influence. Nous formalisons ce problème en termes de graphes et nous le ramenons à un problème de partitionnement de graphe qui est NP-difficile dans ce cas général. Nous proposons alors une formulation en programme linéaire en nombre entier pour ce problème. Nous étudions le polyèdre associé et décrivons plusieurs classes de contraintes valides. Nous donnons des conditions nécessaires pour que ces contraintes définissent des facettes et discutons des algorithmes de séparations de ces contraintes. En utilisant les résultats polyédraux obtenus, nous développons un algorithme de coupes et branchements. Enfin, nous donnons quelques résultats expérimentaux qui montrent l'efficacité de notre algorithme de coupes et branchements / The inter-companies knowledge allows to every partner to learn about its customers, its suppliers and to develop its activity. Also this permits to limit the risk related to the creditworthiness, or the late payment of its partners. With the cash flow pressures, the need for growth and increased competition, this area becomes more strategic than ever, for both small (PME) and large groups. The amount of data processed in this domain, the requirements of quality and freshness, the need to cross these data to obtain new information and indicators, yield several optimization problems for which the recent techniques and computational tools can bring effective solutions. In this thesis, we use combinatorial optimization, text algorithms as well as graph theory to solve efficiently problems arising in the field of inter-companies knowledge. In particular, such problems was encountered in Altares D&B. First, we focus on the quality of the managers database. This problem combines the detection and removal of duplicates in a database, as well as the error detection in a string. We propose a method for solving this problem, based on data normalization, text algorithms and syntactic comparison between two strings. Our experimental results show that this method is relevant for the detection and removal of duplicates, and it is also very efficient in terms of processing time. In a second part of the thesis, we address a problem related to the data of ownership links. We compute the indirect links, and identify the group heads. We propose a method for solving this problem using graph theory and combinatorial optimization. We then perform a set of experiments on several real-world instances. The computational results show the effectiveness of our method in terms of CPU-time and resource allocation. In fact, the CPU time for computation increases logarithmically with the size of the instances. Finally, we consider the problem of identifying influence networks. We give a description of this problem in terms of graphs, and show that it can reduce to a graph partitioning problem. The latter is NP-hard. We then propose an integer linear programming formulation to model the problem. We investigate the associated polyhedron and describe several classes of valid inequalities. We give some necessaryand sufficient conditions for these inequalities to define facets of the considered polyhedron, and we discuss the related separation problems. Based on the obtained polyhedral results, we devise a Branch-and-Cut algorithm to solve the problem. Some numerical results are presented to show the efficiency of our algorithm.
|
245 |
Mathematical programming approaches to pricing problemsViolin, Alessia 18 December 2014 (has links)
There are many real cases where a company needs to determine the price of its products so as to maximise its revenue or profit.<p>To do so, the company must consider customers' reactions to these prices, as they may refuse to buy a given product or service if its price is too high. This is commonly known in literature as a pricing problem.<p>This class of problems, which is typically bilevel, was first studied in the 1990s and is NP-hard, although polynomial algorithms do exist for some particular cases. Many questions are still open on this subject.<p><p>The aim of this thesis is to investigate mathematical properties of pricing problems, in order to find structural properties, formulations and solution methods that are as efficient as possible. In particular, we focus our attention on pricing problems over a network. In this framework, an authority owns a subset of arcs and imposes tolls on them, in an attempt to maximise his/her revenue, while users travel on the network, seeking for their minimum cost path.<p><p>First, we provide a detailed review of the state of the art on bilevel pricing problems. <p>Then, we consider a particular case where the authority is using an unit toll scheme on his/her subset of arcs, imposing either the same toll on all of them, or a toll proportional to a given parameter particular to each arc (for instance a per kilometre toll). We show that if tolls are all equal then the complexity of the problem is polynomial, whereas in case of proportional tolls it is pseudo-polynomial.<p>We then address a robust approach taking into account uncertainty on parameters. We solve some polynomial cases of the pricing problem where uncertainty is considered using an interval representation.<p><p>Finally, we focus on another particular case where toll arcs are connected such that they constitute a path, as occurs on highways. We develop a Dantzig-Wolfe reformulation and present a Branch-and-Cut-and-Price algorithm to solve it. Several improvements are proposed, both for the column generation algorithm used to solve the linear relaxation and for the branching part used to find integer solutions. Numerical results are also presented to highlight the efficiency of the proposed strategies. This problem is proved to be APX-hard and a theoretical comparison between our model and another one from the literature is carried out. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
246 |
Models and methods for molecular phylogeneticsCatanzaro, Daniele 28 October 2008 (has links)
Un des buts principaux de la biologie évolutive et de la médecine moléculaire consiste à reconstruire les relations phylogénétiques entre organismes à partir de leurs séquences moléculaires. En littérature, cette question est connue sous le nom d’inférence phylogénétique et a d'importantes applications dans la recherche médicale et pharmaceutique, ainsi que dans l’immunologie, l’épidémiologie, et la dynamique des populations. L’accumulation récente de données de séquences d’ADN dans les bases de données publiques, ainsi que la facilité relative avec laquelle des données nouvelles peuvent être obtenues, rend l’inférence phylogénétique particulièrement difficile (l'inférence phylogénétique est un problème NP-Hard sous tous les critères d’optimalité connus), de telle manière que des nouveaux critères et des algorithmes efficaces doivent être développés. Cette thèse a pour but: (i) d’analyser les limites mathématiques et biologiques des critères utilisés en inférence phylogénétique, (ii) de développer de nouveaux algorithmes efficaces permettant d’analyser de plus grands jeux de données. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
247 |
Ant colony optimization for continuous and mixed-variable domainsSocha, Krzysztof 09 May 2008 (has links)
In this work, we present a way to extend Ant Colony Optimization (ACO), so that it can be applied to both continuous and mixed-variable optimization problems. We demonstrate, first, how ACO may be extended to continuous domains. We describe the algorithm proposed, discuss the different design decisions made, and we position it among other metaheuristics.<p>Following this, we present the results of numerous simulations and testing. We compare the results obtained by the proposed algorithm on typical benchmark problems with those obtained by other methods used for tackling continuous optimization problems in the literature. Finally, we investigate how our algorithm performs on a real-world problem coming from the medical field—we use our algorithm for training neural network used for pattern classification in disease recognition.<p>Following an extensive analysis of the performance of ACO extended to continuous domains, we present how it may be further adapted to handle both continuous and discrete variables simultaneously. We thus introduce the first native mixed-variable version of an ACO algorithm. Then, we analyze and compare the performance of both continuous and mixed-variable<p>ACO algorithms on different benchmark problems from the literature. Through the research performed, we gain some insight into the relationship between the formulation of mixed-variable problems, and the best methods to tackle them. Furthermore, we demonstrate that the performance of ACO on various real-world mixed-variable optimization problems coming from the mechanical engineering field is comparable to the state of the art. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
248 |
Robustness and preferences in combinatorial optimizationHites, Romina 15 December 2005 (has links)
In this thesis, we study robust combinatorial problems with interval data. We introduce several new measures of robustness in response to the drawbacks of existing measures of robustness. The idea of these new measures is to ensure that the solutions are satisfactory for the decision maker in all scenarios, including the worst case scenario. Therefore, we have introduced a threshold over the worst case costs, in which above this threshold, solutions are no longer satisfactory for the decision maker. It is, however, important to consider other criteria than just the worst case.<p>Therefore, in each of these new measures, a second criteria is used to evaluate the performance of the solution in other scenarios such as the best case one. <p><p>We also study the robust deviation p-elements problem. In fact, we study when this solution is equal to the optimal solution in the scenario where the cost of each element is the midpoint of its corresponding interval. <p><p>Then, we finally formulate the robust combinatorial problem with interval data as a bicriteria problem. We also integrate the decision maker's preferences over certain types of solutions into the model. We propose a method that uses these preferences to find the set of solutions that are never preferred by any other solution. We call this set the final set. <p><p>We study the properties of the final sets from a coherence point of view and from a robust point of view. From a coherence point of view, we study necessary and sufficient conditions for the final set to be monotonic, for the corresponding preferences to be without cycles, and for the set to be stable.<p>Those that do not satisfy these properties are eliminated since we believe these properties to be essential. We also study other properties such as the transitivity of the preference and indifference relations and more. We note that many of our final sets are included in one another and some are even intersections of other final sets. From a robust point of view, we compare our final sets with different measures of robustness and with the first- and second-degree stochastic dominance. We show which sets contain all of these solutions and which only contain these types of solutions. Therefore, when the decision maker chooses his preferences to find the final set, he knows what types of solutions may or may not be in the set.<p><p>Lastly, we implement this method and apply it to the Robust Shortest Path Problem. We look at how this method performs using different types of randomly generated instances. <p> / Doctorat en sciences, Orientation recherche opérationnelle / info:eu-repo/semantics/nonPublished
|
249 |
Theoretical and practical aspects of ant colony optimizationBlum, Christian 23 January 2004 (has links)
Combinatorial optimization problems are of high academical as well as practical importance. Many instances of relevant combinatorial optimization problems are, due to their dimensions, intractable for complete methods such as branch and bound. Therefore, approximate algorithms such as metaheuristics received much attention in the past 20 years. Examples of metaheuristics are simulated annealing, tabu search, and evolutionary computation. One of the most recent metaheuristics is ant colony optimization (ACO), which was developed by Prof. M. Dorigo (who is the supervisor of this thesis) and colleagues. This thesis deals with theoretical as well as practical aspects of ant colony optimization.<p><p>* A survey of metaheuristics. Chapter 1 gives an extensive overview on the nowadays most important metaheuristics. This overview points out the importance of two important concepts in metaheuristics: intensification and diversification. <p><p>* The hyper-cube framework. Chapter 2 introduces a new framework for implementing ACO algorithms. This framework brings two main benefits to ACO researchers. First, from the point of view of the theoretician: we prove that Ant System (the first ACO algorithm to be proposed in the literature) in the hyper-cube framework generates solutions whose expected quality monotonically increases with the number of algorithm iterations when applied to unconstrained problems. Second, from the point of view of the experimental researcher, we show through examples that the implementation of ACO algorithms in the hyper-cube framework increases their robustness and makes the handling of the pheromone values easier.<p><p>* Deception. In the first part of Chapter 3 we formally define the notions of first and second order deception in ant colony optimization. Hereby, first order deception corresponds to deception as defined in the field of evolutionary computation and is therefore a bias introduced by the problem (instance) to be solved. Second order deception is an ACO-specific phenomenon. It describes the observation that the quality of the solutions generated by ACO algorithms may decrease over time in certain settings. In the second part of Chapter 3 we propose different ways of avoiding second order deception.<p><p>* ACO for the KCT problem. In Chapter 4 we outline an ACO algorithm for the edge-weighted k-cardinality tree (KCT) problem. This algorithm is implemented in the hyper-cube framework and uses a pheromone model that was determined to be well-working in Chapter 3. Together with the evolutionary computation and the tabu search approaches that we develop in Chapter 4, this ACO algorithm belongs to the current state-of-the-art algorithms for the KCT problem.<p><p>* ACO for the GSS problem. Chapter 5 describes a new ACO algorithm for the group shop scheduling (GSS) problem, which is a general shop scheduling problem that includes among others the well-known job shop scheduling (JSS) and the open shop scheduling (OSS) problems. This ACO algorithm, which is implemented in the hyper-cube framework and which uses a new pheromone model that was experimentally tested in Chapter 3, is currently the best ACO algorithm for the JSS as well as the OSS problem. In particular when applied to OSS problem instances, this algorithm obtains excellent results, improving the best known solution for several OSS benchmark instances. A final contribution of this thesis is the development of a general method for the solution of combinatorial optimization problems which we refer to as Beam-ACO. This method is a hybrid between ACO and a tree search technique known as beam search. We show that Beam-ACO is currently a state-of-the-art method for the application to the existing open shop scheduling (OSS) problem instances.<p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
250 |
Optimisation physique et logique de systèmes de production / Physical and logical optimization of production systemsBernate Lara, Andres Felipe 04 April 2014 (has links)
Les travaux de cette thèse sont articulés autour du problème d’ordonnancement de tâches dans un type d’atelier de structure complexe peu étudié dans la littérature. Cet atelier est de composition hybride : chaque étage de l’atelier a une ou plusieurs machines. Les principales contraintes considérées sont le traitement par lots et la minimisation du retard total. Les méthodes de résolution de ce problème sont intégrées dans les systèmes d’aide à la décision du programme de recherche du Groupe SouffletEtant donné la structure complexe du type d’atelier considéré, nous avons décomposé ce dernier afin d’étudier plus particulièrement le problème d’ordonnancement sur machines parallèles identiques. Différentes méthodes de résolution sont testées. Les résultats sont analysés afin de proposer une classification d’instances et de méthodes de résolution. Les problèmes étudiés sont résolus de manière exacte et approchée. Différentes méthodes ont été testées : des recherches itératives, des algorithmes tabous, des méthodes évolutionnaires. Les conclusions de la résolution du problème d’ordonnancement des machines parallèles sont utilisées pour construire des méthodes à deux niveaux pour le problème complexe d’ordonnancement. Les résultats montrent que les algorithmes trouvent des solutions de bonne qualité pour le problème traité. De la même manière, de problématiques industrielles similaires sont traitées, dans l’objectif d’optimiser le fonctionnement du centre de recherche / This thesis considers a complex workshop scheduling problem, which is rarely studied to our knowledge. This workshop has a hybrid composition : one or several machines are available at each stage. Main considered constraints are batch processing and total tardiness minimization. Solution methods are embedded on the information system of research program of Soufflet Group. Given the complex structure of the workshop, it has been split in order to study the parallel machines scheduling problem individually. Different solution methods are developed. Obtained results are used to build a classification of instances and solution methods. To solve described problems, exact and approach solution methods are proposed. We have adapted iterated search, tabu search, genetic algorithms, … Findings from solving parallel machines scheduling problem are employed to develop a two levels solution method for the described flow shop problem. Results show the performance of developed algorithms to find good quality solutions for described scheduling problem. Similarly, industrial problems are considered, in order to optimize operational behavior of research center
|
Page generated in 0.0944 seconds