Spelling suggestions: "subject:"loptimisation combinatorial"" "subject:"doptimisation combinatorial""
251 |
Complétion combinatoire pour la reconstruction de réseaux métaboliques, et application au modèle des algues brunes Ectocarpus siliculosus / Combinatorial completion for metabolic network reconstruction, and application to the model organism for brown algae Ectocarpus siliculosusPrigent, Sylvain 14 November 2014 (has links)
Durant cette thèse nous nous sommes attachés au développement d'une méthode globale de création de réseaux métaboliques chez des espèces biologiques non classiques pour lesquelles nous possédons peu d'informations. Classiquement cette reconstruction s'articule en trois points : la création d'une ébauche métabolique à partir d'un génome, la complétion du réseau et la vérification du résultat obtenu. Nous nous sommes particulièrement intéressés au problème d'optimisation combinatoire difficile que représente l'étape de complétion du réseau, en utilisant un paradigme de programmation par contraintes pour le résoudre : la programmation par ensemble réponse (ou ASP). Les modifications apportées à une méthode préexistante nous ont permis d'améliorer à la fois le temps de calcul pour résoudre ce problème combinatoire et la qualité de la modélisation. L'ensemble de ce processus de reconstruction de réseau métabolique a été appliqué au modèle des algues brunes, Ectocarpus siliculosus, nous permettant ainsi de reconstruire le premier réseau métabolique chez une macro-algue brune. La reconstruction de ce réseau nous a permis d'améliorer notre compréhension du métabolisme de cette espèce et d'améliorer l'annotation de son génome. / In this thesis we focused on the development of a comprehensive approach to reconstruct metabolic networks applied to unconventional biological species for which we have little information. Traditionally, this reconstruction is based on three points : the creation of a metabolic draft from a genome, the completion of this draft and the verification of the results. We have been particularly interested in the hard combinatorial optimization problem represented by the gap-filling step. We used Answer Set Programming (or ASP) to solve this combinatorial problem. Changes to an existing method allowed us to improve both the computational time and the quality of modeling. This entire process of metabolic network reconstruction was applied to the model of brown algae, Ectocarpus siliculosus, allowing us to reconstruct the first metabolic network of a brown macro-algae. The reconstruction of this network allowed us to improve our understanding of the metabolism of this species and to improve annotation of its genome.
|
252 |
Optimizing ANN Architectures using Mixed-Integer ProgrammingElAraby, Mostafa 08 1900 (has links)
Over-parameterized networks, where the number of parameters surpass the number of train-ing samples, generalize well on various tasks. However, large networks are computationally expensive in terms of the training and inference time. Furthermore, the lottery ticket hy-pothesis states that a subnetwork of a randomly initialized network can achieve marginal loss after training on a specific task compared to the original network. Therefore, there is a need to optimize the inference and training time, and a potential for more compact neural architectures.
We introduce a novel approach “Optimizing ANN Architectures using Mixed-Integer Programming” (OAMIP) to find these subnetworks by identifying critical neurons and re-moving non-critical ones, resulting in a faster inference time. The proposed OAMIP utilizes a Mixed-Integer Program (MIP) for assigning importance scores to each neuron in deep neural network architectures. Our MIP is guided by the impact on the main learning task of the net-work when simultaneously pruning subsets of neurons. In concrete, the optimization of the objective function drives the solver to minimize the number of neurons, to limit the network to critical neurons, i.e., with high importance score, that need to be kept for maintaining the overall accuracy of the trained neural network. Further, the proposed formulation generalizes the recently considered lottery ticket hypothesis by identifying multiple “lucky” subnetworks, resulting in optimized architectures, that not only perform well on a single dataset, but also generalize across multiple ones upon retraining of network weights. Finally, we present a scalable implementation of our method by decoupling the importance scores across layers using auxiliary networks and across di˙erent classes. We demonstrate the ability of OAMIP to prune neural networks with marginal loss in accuracy and generalizability on popular datasets and architectures. / Les réseaux sur-paramétrés, où le nombre de paramètres dépasse le nombre de données, se généralisent bien sur diverses tâches. Cependant, les grands réseaux sont coûteux en termes d’entraînement et de temps d’inférence. De plus, l’hypothèse du billet de loterie indique qu’un sous-réseau d’un réseau initialisé de façon aléatoire peut atteindre une perte marginale après l’entrainement sur une tâche spécifique par rapport au réseau de référence. Par conséquent, il est nécessaire d’optimiser le temps d’inférence et d’entrainement, ce qui est possible pour des architectures neurales plus compactes.
Nous introduisons une nouvelle approche “Optimizing ANN Architectures using Mixed-Integer Programming” (OAMIP) pour trouver ces sous-réseaux en identifiant les neurones importants et en supprimant les neurones non importants, ce qui permet d’accélérer le temps d’inférence. L’approche OAMIP proposée fait appel à un programme mixte en nombres entiers (MIP) pour attribuer des scores d’importance à chaque neurone dans les architectures de modèles profonds. Notre MIP est guidé par l’impact sur la principale tâche d’apprentissage du réseau en élaguant simultanément les neurones. En définissant soigneusement la fonction objective du MIP, le solveur aura une tendance à minimiser le nombre de neurones, à limiter le réseau aux neurones critiques, c’est-à-dire avec un score d’importance élevé, qui doivent être conservés pour maintenir la précision globale du réseau neuronal formé. De plus, la formulation proposée généralise l’hypothèse des billets de loterie récemment envisagée en identifiant de multiples sous-réseaux “chanceux”. Cela permet d’obtenir des architectures optimisées qui non seulement fonctionnent bien sur un seul ensemble de données, mais aussi se généralisent sur des di˙érents ensembles de données lors du recyclage des poids des réseaux. Enfin, nous présentons une implémentation évolutive de notre méthode en découplant les scores d’importance entre les couches à l’aide de réseaux auxiliaires et entre les di˙érentes classes. Nous démontrons la capacité de notre formulation à élaguer les réseaux de neurones avec une perte marginale de précision et de généralisabilité sur des ensembles de données et des architectures populaires.
|
253 |
Modélisation et techniques d'optimisation en bio-informatique et fouille de données / Modelling and techniques of optimization in bioinformatics and data miningBelghiti, Moulay Tayeb 01 February 2008 (has links)
Cette thèse est particulièrement destinée à traiter deux types de problèmes : clustering et l'alignement multiple de séquence. Notre objectif est de résoudre de manière satisfaisante ces problèmes globaux et de tester l'approche de la Programmation DC et DCA sur des jeux de données réelles. La thèse comporte trois parties : la première partie est consacrée aux nouvelles approches de l'optimisation non convexe. Nous y présentons une étude en profondeur de l'algorithme qui est utilisé dans cette thèse, à savoir la programmation DC et l'algorithme DC (DCA). Dans la deuxième partie, nous allons modéliser le problème clustering en trois sous-problèmes non convexes. Les deux premiers sous-problèmes se distinguent par rapport au choix de la norme utilisée, (clustering via les normes 1 et 2). Le troisième sous-problème utilise la méthode du noyau, (clustering via la méthode du noyau). La troisième partie sera consacrée à la bio-informatique. On va se focaliser sur la modélisation et la résolution de deux sous-problèmes : l'alignement multiple de séquence et l'alignement de séquence d'ARN par structure. Tous les chapitres excepté le premier se terminent par des tests numériques. / This Ph.D. thesis is particularly intended to treat two types of problems : clustering and the multiple alignment of sequence. Our objective is to solve efficiently these global problems and to test DC Programming approach and DCA on real datasets. The thesis is divided into three parts : the first part is devoted to the new approaches of nonconvex optimization-global optimization. We present it a study in depth of the algorithm which is used in this thesis, namely the programming DC and the algorithm DC ( DCA). In the second part, we will model the problem clustering in three nonconvex subproblems. The first two subproblems are distinguished compared to the choice from the norm used, (clustering via norm 1 and 2). The third subproblem uses the method of the kernel, (clustering via the method of the kernel). The third part will be devoted to bioinformatics, one goes this focused on the modeling and the resolution of two subproblems : the multiple alignment of sequence and the alignment of sequence of RNA. All the chapters except the first end in numerical tests.
|
254 |
Local Search, data structures and Monte Carlo Search for Multi-Objective Combinatorial Optimization Problems / Recherche Locale, structures de données et Recherche Monte-Carlo pour les problèmes d'optimisation combinatoire Multi-ObjectifCornu, Marek 18 December 2017 (has links)
De nombreux problèmes d'optimisation combinatoire considèrent plusieurs objectifs, souvent conflictuels. Cette thèse s'intéresse à l'utilisation de méthodes de recherche locale, de structures de données et de recherche Monte-Carlo pour la recherche de l'ensemble des solutions efficaces de tels problèmes, représentant l'ensemble des meilleurs compromis pouvant être réalisés en considération de tous les objectifs.Nous proposons une nouvelle méthode d'approximation appelée 2-Phase Iterated Pareto Local Search based on Decomposition (2PIPLS/D) combinant les concepts de recherche locale Pareto (PLS) et de décomposition. La PLS est une descente de recherche locale adaptée au multi-objectif, et la décomposition consiste en la subdivision du problème multi-objectif en plusieurs problèmes mono-objectif. Deux méthodes d'optimisation mono-objectif sont considérées: la recherche locale itérée et la recherche Monte-Carlo imbriquée. Deux modules principaux sont intégrés à 2PIPLS/D. Le premier généralise et améliore une méthode existante et génère un ensemble initial de solutions. Le second réduit efficacement l'espace de recherche et permet d'accélérer la PLS sans négliger la qualité de l'approximation générée. Nous introduisons aussi deux nouvelles structures de données gérant dynamiquement un ensemble de solutions incomparables, la première est spécialisée pour le cas bi-objectif et la seconde pour le cas général.2PIPLS/D est appliquée au Problème du Voyageur de Commerce bi-objectif et tri-objectif et surpasse ses concurrents sur les instances testées. Ensuite, 2PIPLS/D est appliquée à un nouveau problème avec cinq objectifs en lien avec la récente réforme territoriale d'agrandissement des régions françaises. / Many Combinatorial Optimization problems consider several, often conflicting, objectives. This thesis deals with Local Search, data structures and Monte Carlo Search methods for finding the set of efficient solutions of such problems, which is the set of all best possible trade-offs given all the objectives.We propose a new approximation method called 2-Phase Iterated Pareto Local Search based on Decomposition (2PIPLS/D) combining the notions of Pareto Local Search (PLS) and Decomposition. PLS is a local search descent adapted to Multi-Objective spaces, and Decomposition consists in the subdivision of the Multi-Objective problem into a number of Single-Objective problems. Two Single-Objective methods are considered: Iterated Local Search and Nested Monte Carlo Search. Two main components are embedded within the 2PIPLS/D framework. The first one generalizes and improves an existing method generating an initial set of solutions. The second one reduces efficiently the search space and accelerates PLS without notable impact on the quality of the generated approximation. We also introduce two new data structures for dynamically managing a set of incomparable solutions. The first one is specialized for the bi-objective case, while the second one is general.2PIPLS/D is applied to the bi-objective and tri-objective Traveling Salesman Problem and outperforms its competitors on tested instances. Then, 2PIPLS/D is instantiated on a new five-objective problem related to the recent territorial reform of French regions which resulted in the reassignment of departments to new larger regions.
|
255 |
Parallelisation of hybrid metaheuristics for COP solving / Parallélisation de métaheuristiques hybrides pour la résolution de POCLabidi, Mohamed Khalil 20 September 2018 (has links)
L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d’optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle en la taille du problème. Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature. On distingue principalement les méthodes exactes et les méthodes d’approximation. Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore à au calcul parallèle. Dans cette thèse, nous considérons la classe POC des problèmes de conception d'un réseau fiable. Nous présentons un algorithme hybride parallèle d'approximation basé sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme génétique, qui produit des bornes inférieure et supérieure pour les formulations à base de flows. Afin de valider l'approche proposée, une série d'expérimentations est menée sur plusieurs applications: le Problème de conception d'un réseau k-arête-connexe avec contrainte de borne (kHNDP) avec L=2,3, le problème de conception d'un réseau fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux, à savoir le kHNDP avec L >= 2 et le problème de conception d'un réseau fiable k-arête-connexe (kESNDP). L'étude expérimentale de la parallélisation est présentée après cela. Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles exactes: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série d'expérimentation a été menée sur une grappe de 128 processeurs, et des accélération intéressantes ont été atteintes pour la résolution du problèmes kHNDP avec k=3 et L=3. / Combinatorial Optimization (CO) is an area of research that is in a constant progress. Solving a Combinatorial Optimization Problem (COP) consists essentially in finding the best solution (s) in a set of feasible solutions called a search space that is usually exponential in cardinality in the size of the problem. To solve COPs, several methods have been proposed in the literature. A distinction is made mainly between exact methods and approximation methods. Since it is not possible to aim for an exact resolution of NP-Complete problems when the size of the problem exceeds a certain threshold, researchers have increasingly used Hybrid (HA) or parallel computing algorithms in recent decades. In this thesis we consider the COP class of Survivability Network Design Problems. We present an approximation parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations. In order to validate the proposed approach, a series of experiments is carried out on several applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) when L = 2,3, The problem of the Steiner k-Edge-Connected Network Design Problem (SkESNDP) and then, two more general problems namely the kHNDP when L >= 2 and the k-Edge-Connected Network Design Problem (kESNDP). The experimental study of the parallelisation is presented after that. In the last part of this work, we present a two parallel exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has been made on a cluster of 128 processors and interesting speedups has been reached in kHNDP resolution when k=3 and L=3.
|
256 |
Design of robust networks : application to the design of wind farm cabling networks / Conception de réseaux robustes : application à des problèmes de câblage dans les parcs éoliensRidremont, Thomas 09 April 2019 (has links)
Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires.Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position des câbles que l’on peut construire, leurs capacités, et la position des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau. / Nowadays, the design of networks has become a decisive problematic which appears in many fields such as transport or energy. In particular, it has become necessary and important to optimize the way in which networks used to produce, collect or transport energy are designed. We focus in this thesis on electricity produced through wind farms. The production of energy by wind turbines appears more than ever like a good alternative to the electrical production of thermal or nuclear power plants.We focus in this thesis on the design of the cabling network which allows to collect and route the energy from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem, we know the location of each wind turbine of the farm and the one of the sub-station. We also know the location of possible inter-connection nodes which allow to connect different cables between them. Each wind turbine produces a known quantity of energy and with each cable are associated a cost and a capacity (the maximum amount of energy that can be routed through this cable). The optimizationproblem that we consider is to select a set of cables of minimum cost such that the energy produced from the wind turbines can be routed to the sub-station in the network induced by this set of cables, without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns.
|
257 |
Optimizing the imbalances in a graph / Optimiser les déséquilibres dans un grapheGlorieux, Antoine 19 June 2017 (has links)
Le déséquilibre d'un sommet dans un graphe orienté est la valeur absolue de la différence entre son degré sortant et son degré entrant. Nous étudions le problème de trouver une orientation des arêtes du graphe telle que l'image du vecteur dont les composantes sont les déséquilibres des sommets par une fonction objectif f est maximisée. Le premier cas considéré est le problème de maximiser le minimum des déséquilibres sur toutes les orientations possibles. Nous caractérisons les graphes dont la valeur objective optimale est nulle. Ensuite nous donnons plusieurs résultats concernant la complexité du problème. Enfin, nous introduisons différentes formulations du problème et présentons quelques résultats numériques. Par la suite, nous montrons que le cas f=1/2 | |·| |₁ mène au célèbre problème de la coupe de cardinalité maximale. Nous introduisons de nouvelles formulations ainsi qu'un nouveau majorant qui domine celui de Goemans et Williamson. Des résultats théoriques et numériques concernant la performance des approches sont présentés. Pour finir, dans le but de renforcer certaines des formulations des problèmes étudiés, nous étudions une famille de polyèdres spécifique consistant en l'enveloppe convexe des matrices d'affectation 0/1 (où chaque colonne contient exactement une composante égale à 1) annexée avec l'indice de leur ligne non-identiquement nulle la plus basse. Nous donnons une description complète de ce polytope ainsi que certaines de ses variantes qui apparaissent naturellement dans le contexte de divers problèmes d'optimisation combinatoire. Nous montrons également que résoudre un programme linéaire sur un tel polytope peut s'effectuer en temps polynomial / The imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time
|
258 |
Learning to compare nodes in branch and bound with graph neural networksLabassi, Abdel Ghani 08 1900 (has links)
En informatique, la résolution de problèmes NP-difficiles en un temps raisonnable est d’une grande importance : optimisation de la chaîne d’approvisionnement, planification, routage, alignement de séquences biologiques multiples, inference dans les modèles graphiques pro- babilistes, et même certains problèmes de cryptographie sont tous des examples de la classe NP-complet. En pratique, nous modélisons beaucoup d’entre eux comme un problème d’op- timisation en nombre entier, que nous résolvons à l’aide de la méthodologie séparation et évaluation. Un algorithme de ce style divise un espace de recherche pour l’explorer récursi- vement (séparation), et obtient des bornes d’optimalité en résolvant des relaxations linéaires sur les sous-espaces (évaluation). Pour spécifier un algorithme, il faut définir plusieurs pa- ramètres, tel que la manière d’explorer les espaces de recherche, de diviser une recherche l’espace une fois exploré, ou de renforcer les relaxations linéaires. Ces politiques peuvent influencer considérablement la performance de résolution.
Ce travail se concentre sur une nouvelle manière de dériver politique de recherche, c’est à dire le choix du prochain sous-espace à séparer étant donné une partition en cours, en nous servant de l’apprentissage automatique profond. Premièrement, nous collectons des données résumant, sur une collection de problèmes donnés, quels sous-espaces contiennent l’optimum et quels ne le contiennent pas. En représentant ces sous-espaces sous forme de graphes bipartis qui capturent leurs caractéristiques, nous entraînons un réseau de neurones graphiques à déterminer la probabilité qu’un sous-espace contienne la solution optimale par apprentissage supervisé. Le choix d’un tel modèle est particulièrement utile car il peut s’adapter à des problèmes de différente taille sans modifications. Nous montrons que notre approche bat celle de nos concurrents, consistant à des modèles d’apprentissage automatique plus simples entraînés à partir des statistiques du solveur, ainsi que la politique par défaut de SCIP, un solveur open-source compétitif, sur trois familles NP-dures: des problèmes de recherche de stables de taille maximum, de flots de réseau multicommodité à charge fixe, et de satisfiabilité maximum. / In computer science, solving NP-hard problems in a reasonable time is of great importance, such as in supply chain optimization, scheduling, routing, multiple biological sequence align- ment, inference in probabilistic graphical models, and even some problems in cryptography. In practice, we model many of them as a mixed integer linear optimization problem, which we solve using the branch and bound framework. An algorithm of this style divides a search space to explore it recursively (branch) and obtains optimality bounds by solving linear relaxations in such sub-spaces (bound). To specify an algorithm, one must set several pa- rameters, such as how to explore search spaces, how to divide a search space once it has been explored, or how to tighten these linear relaxations. These policies can significantly influence resolution performance.
This work focuses on a novel method for deriving a search policy, that is, a rule for select- ing the next sub-space to explore given a current partitioning, using deep machine learning. First, we collect data summarizing which subspaces contain the optimum, and which do not. By representing these sub-spaces as bipartite graphs encoding their characteristics, we train a graph neural network to determine the probability that a subspace contains the optimal so- lution by supervised learning. The choice of such design is particularly useful as the machine learning model can automatically adapt to problems of different sizes without modifications. We show that our approach beats the one of our competitors, consisting of simpler machine learning models trained from solver statistics, as well as the default policy of SCIP, a state- of-the-art open-source solver, on three NP-hard benchmarks: generalized independent set, fixed-charge multicommodity network flow, and maximum satisfiability problems.
|
259 |
Routage adaptatif et qualité de service dans les réseaux optiques à commutation de rafalesBelbekkouche, Abdeltouab 08 1900 (has links)
Les réseaux optiques à commutation de rafales (OBS) sont des candidats pour jouer un rôle important dans le cadre des réseaux optiques de nouvelle génération. Dans cette thèse, nous nous intéressons au routage adaptatif et au provisionnement de la qualité de service dans ce type de réseaux.
Dans une première partie de la thèse, nous nous intéressons à la capacité du routage multi-chemins et du routage alternatif (par déflection) à améliorer les performances des réseaux OBS, pro-activement pour le premier et ré-activement pour le second. Dans ce contexte, nous proposons une approche basée sur l’apprentissage par renforcement où des agents placés dans tous les nœuds du réseau coopèrent pour apprendre, continuellement, les chemins du routage et les chemins alternatifs optimaux selon l’état actuel du réseau. Les résultats numériques montrent que cette approche améliore les performances des réseaux OBS comparativement aux solutions proposées dans la littérature.
Dans la deuxième partie de cette thèse, nous nous intéressons au provisionnement absolu de la qualité de service où les performances pire-cas des classes de trafic de priorité élevée sont garanties quantitativement. Plus spécifiquement, notre objectif est de garantir la transmission sans pertes des rafales de priorité élevée à l’intérieur du réseau OBS tout en préservant le multiplexage statistique et l’utilisation efficace des ressources qui caractérisent les réseaux OBS. Aussi, nous considérons l’amélioration des performances du trafic best effort. Ainsi, nous proposons deux approches : une approche basée sur les nœuds et une approche basée sur les chemins. Dans l’approche basée sur les nœuds, un ensemble de longueurs d’onde est assigné à chaque nœud du bord du réseau OBS pour qu’il puisse envoyer son trafic garanti. Cette assignation prend en considération les distances physiques entre les nœuds du bord. En outre, nous proposons un algorithme de sélection des longueurs d’onde pour améliorer les performances des rafales best effort. Dans l’approche basée sur les chemins, le provisionnement absolu de la qualité de service est fourni au niveau des chemins entre les nœuds du bord du réseau OBS. À cette fin, nous proposons une approche de routage et d’assignation des longueurs d’onde qui a pour but la réduction du nombre requis de longueurs d’onde pour établir des chemins sans contentions. Néanmoins, si cet objectif ne peut pas être atteint à cause du nombre limité de longueurs d’onde, nous proposons de synchroniser les chemins en conflit sans le besoin pour des équipements additionnels. Là aussi, nous proposons un algorithme de sélection des longueurs d’onde pour les rafales best effort. Les résultats numériques montrent que l’approche basée sur les nœuds et l’approche basée sur les chemins fournissent le provisionnement absolu de la qualité de service pour le trafic garanti et améliorent les performances du trafic best effort. En outre, quand le nombre de longueurs d’ondes est suffisant, l’approche basée sur les chemins peut accommoder plus de trafic garanti et améliorer les performances du trafic best effort par rapport à l’approche basée sur les nœuds. / Optical Burst Switching (OBS) networks are candidates to play an important role in the context of next generation optical networks. In this thesis, we are interested in adaptive routing and quality of service provisioning for these networks.
In the first part of the thesis, we study the capability of multi-path routing and alternative routing (deflection routing) to improve the performance of the OBS network proactively for the former and reactively for the latter. In this context, we propose a reinforcement learning-based approach where learning agents, placed in each OBS node, cooperate to learn, continuously, optimal routing paths and alternative paths according to the current state of the network. Numerical results show that the proposed approach improves the performance of the OBS network compared to existing solutions in the literature.
In the second part of the thesis, we consider the problem of absolute quality of service provisioning for OBS networks where worst-case performance of high priority traffic is guaranteed quantitatively. Particularly, we are interested in the loss-free transmission, inside the OBS network, of high priority bursts, while preserving statistical multiplexing gain and high resources utilization of the OBS network. Also, we aim to improve the performance of best effort traffic. Hence, we propose two approaches: (a) the node-based approach; and (b) the path-based approach. In the node-based approach, we propose to assign a set of wavelengths to each OBS edge node that it can use to send its guaranteed traffic. This assignment takes into consideration physical distances between edge nodes. Furthermore, we propose a wavelength selection algorithm to improve the performance of best effort bursts. In the path-based approach, absolute quality of service provisioning is offered at end-to-end path level. To do this, we propose a routing and wavelength assignment approach which aims to reduce the number of wavelengths required to establish contention free paths. Nevertheless, if this objective cannot be reached because of the limited number of wavelengths in each fiber link, we propose an approach to synchronize overlapping paths without the need for additional equipments for synchronization. Here again, we propose a wavelength selection algorithm for best effort bursts. Numerical results show that both the node-based and the path-based approaches successfully provide absolute quality of service provisioning for guaranteed traffic and improve the performance of best effort traffic. Also, path-based approach could accommodate more guaranteed traffic and improve the performance of best effort traffic compared to node-based approach when the number of wavelengths is sufficient.
|
260 |
Dynamic cavity method and problems on graphs / Méthode de cavité dynamique et problèmes sur des graphesLokhov, Andrey Y. 14 November 2014 (has links)
Un grand nombre des problèmes d'optimisation, ainsi que des problèmes inverses, combinatoires ou hors équilibre qui apparaissent en physique statistique des systèmes complexes, peuvent être représentés comme un ensemble des variables en interaction sur un certain réseau. Bien que la recette universelle pour traiter ces problèmes n'existe pas, la compréhension qualitative et quantitative des problèmes complexes sur des graphes a fait des grands progrès au cours de ces dernières années. Un rôle particulier a été joué par des concepts empruntés de la physique des verres de spin et la théorie des champs, qui ont eu beaucoup de succès en ce qui concerne la description des propriétés statistiques des systèmes complexes et le développement d'algorithmes efficaces pour des problèmes concrets.En première partie de cette thèse, nous étudions des problèmes de diffusion sur des réseaux, avec la dynamique hors équilibre. En utilisant la méthode de cavité sur des trajectoires dans le temps, nous montrons comment dériver des équations dynamiques dites "message-passing'' pour une large classe de modèles avec une dynamique unidirectionnelle -- la propriété clef qui permet de résoudre le problème. Ces équations sont asymptotiquement exactes pour des graphes localement en arbre et en général représentent une bonne approximation pour des réseaux réels. Nous illustrons cette approche avec une application des équations dynamiques pour résoudre le problème inverse d'inférence de la source d'épidémie dans le modèle "susceptible-infected-recovered''.Dans la seconde partie du manuscrit, nous considérons un problème d'optimisation d'appariement planaire optimal sur une ligne. En exploitant des techniques de la théorie de champs et des arguments combinatoires, nous caractérisons une transition de phase topologique qui se produit dans un modèle désordonné simple, le modèle de Bernoulli. Visant une application à la physique des structures secondaires de l'ARN, nous discutons la relation entre la transition d'appariement parfait-imparfait et la transition de basse température connue entre les états fondu et vitreux de biopolymère; nous proposons également des modèles généralisés qui suggèrent une correspondance exacte entre la matrice des contacts et la séquence des nucléotides, permettant ainsi de donner un sens à la notion des alphabets effectifs non-entiers. / A large number of optimization, inverse, combinatorial and out-of-equilibrium problems, arising in the statistical physics of complex systems, allow for a convenient representation in terms of disordered interacting variables defined on a certain network. Although a universal recipe for dealing with these problems does not exist, the recent years have seen a serious progress in understanding and quantifying an important number of hard problems on graphs. A particular role has been played by the concepts borrowed from the physics of spin glasses and field theory, that appeared to be extremely successful in the description of the statistical properties of complex systems and in the development of efficient algorithms for concrete problems.In the first part of the thesis, we study the out-of-equilibrium spreading problems on networks. Using dynamic cavity method on time trajectories, we show how to derive dynamic message-passing equations for a large class of models with unidirectional dynamics -- the key property that makes the problem solvable. These equations are asymptotically exact for locally tree-like graphs and generally provide a good approximation for real-world networks. We illustrate the approach by applying the dynamic message-passing equations for susceptible-infected-recovered model to the inverse problem of inference of epidemic origin. In the second part of the manuscript, we address the optimization problem of finding optimal planar matching configurations on a line. Making use of field-theory techniques and combinatorial arguments, we characterize a topological phase transition that occurs in the simple Bernoulli model of disordered matching. As an application to the physics of the RNA secondary structures, we discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition at low temperatures, and suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the nucleotide sequence, thus giving sense to the notion of effective non-integer alphabets.
|
Page generated in 0.1255 seconds