• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 34
  • 3
  • Tagged with
  • 65
  • 28
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Etudes moléculaires du canal potassique sensible a l'ATP : "gating", pathologie et optogénétique / Molecular studies of ATP-sensitive potassium channels : gating, pathology, and optogenetics

Reyes Mejia, Gina Catalina 23 September 2016 (has links)
Les canaux potassiques sensibles à l’ATP (KATP) sont des canaux omniprésents liant excitabilité et énergie cellulaire. Ils fonctionnent en captant le niveau relatif des nucléotides ATP et ADP à l’intérieur des cellules: Les premiers bloquant le canal et les derniers l’activant. De plus le phospholipide phosphatidylinositol4,5-bisphosphate (PIP2) est connu pour être un puissant régulateur des canaux KATP. Ceux-ci sont présents dans la plupart des tissus excitables et sont impliqués dans un grand nombre de fonctions physiologiques. L’objectif de ma thèse consiste à désigner un bloc dépendant de la lumière au niveau de ces KATP, afin de contrôler son activité optiquement tout en gardant ses propriétés natives. Cela a été accompli par la mutation de différents résidus en cystéine. Ce canal KATP complètement dépendant de la lumière, pourrait être utilisé pour réguler les actions de potentiels via la lumière afin de piloter différents aspects d’électrophysiologie cellulaire mais aussi de développer des applications de photo-traitements.J’ai également réalisé la cartographie fonctionnelle des résidus impliqués dans le gating du canal Kir6.2 sous le contrôle de protéines membranaires interagissant avec le domaine N-terminal. Cela a été réalisé par le design d’un canal artificiel Kir6.2 formé par la fusion du C-terminal d’un RCPG avec le N-terminal du canal. Des structures cristallographiques et des caractérisations fonctionnelles des canaux potassiques ont permis de mettre en évidence la présence de deux portes dans les domaines transmembranaires : le filtre de sélectivité et le « gate A » à l’interface cytoplasmique, et le troisième « gate » dans le domaine cytoplasmique du canal Kir connu sous le nom de « G loop gate ». Enfin j’ai caractérisé de mutations dans le gène ABCC9 codant pour SUR2A et associé au syndrome de Cantu (CS). Ces mutations sont localisées dans le domaine transmembranaire 0 (TMD0) de SUR2A, un domaine essentiel dans l’interaction entre Kir6.2 et SUR dans le complexe KATP. Les résultats suggèrent que les deux mutations cause une hyperactivité du canal via 2 mécanismes distincts : (1) Une diminution de la sensibilité de l’ATP affectant la modulation du PIP2, mais qui n’affecte pas l’activation par le Mg-ADP ou (2) aucun effets en réponse à l’ATP ou Mg-ADP, mais une sensibilité accrue au PIP2. Ces découvertes soulignent le rôle essentiel du TMD0 dans la modulation du « gating » de Kir6.2. En particulier, cela démontre qu’il y a un contrôle de la réponse du canal par des effecteurs intracellulaires qui se fixent sur Kir6.2, impliquant des interactions très liées entre Kir6.2 et la région TMD0. / ATP-sensitive K+ (KATP) channels are ubiquitous channels designed to couple excitability to cellular energy. They perform this function by sensing the relative levels of the intracellular nucleotides ATP and ADP; with ATP blocking the channel and ADP activating it. Additionally, the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is known to be a strong regulator of KATP channels. These channels are present in many excitable tissues and involved in many physiological functions. The aim of this thesis is to design a light dependent block of the KATP channel, in order to control its activity and have it under optical control while at the same time retaining its native properties. This was accomplished by mutating specific residues to cysteines. This light dependent blocked KATP channel, could be used to regulate action potentials with light to tune diverse aspects of cellular electrophysiology and potentially photo-pharmacology treatment. We also performed a functional mapping of the Kir6.2 channel gate(s) under the control of membrane proteins interacting with the N-terminal domain. This was performed by using a unique artificial gate Kir6.2 channel formed by fusing a GPCR C-terminus to the Kir6.2 N terminus. Crystallographic structures and functional characterizations of potassium channels demonstrated the presence of two gates in the transmembrane domains: the selectivity filter and the "A" gate at the cytoplasmic interface, and a third gate in the cytoplasmic domain of Kir channels known as the G loop gate. Unexpectedly, our results demonstrated that several gates could be involved suggesting a concerted mechanism. Finally, we characterized two single-point mutations in the ABCC9 gene encoding SUR2, that are associated with Cantu syndrome (CS). These mutations are localized in transmembrane domain 0 (TMD0) of SUR2A, an essential domain which mediates the interaction between Kir6.2 and SUR within the K-ATP channel complex. Results suggest that the two mutations cause KATP channel hyperactivity through two divergent mechanisms: (1) a decreased sensitivity to ATP inhibition and affecting the modulation by PIP2, and that does not affect activation by Mg-ADP or (2) any effect on the response to ATP and Mg-ADP, but more sensitive to activation by PIP2. These discoveries underline the essential role of TMD0 in the gating modulation of Kir6.2. They demonstrate in particular that it can control the response of the channel to intracellular effectors that bind to Kir6.2, implying tight interactions between Kir6.2 and the TMD0 region.
32

Synaptic changes upon removal of extracellular perineuronal nets in adult mouse visual cortex / Modifications synaptiques suite à la dégradation du réseau péri-neuronal extracellulaire dans le cortex visuel de souris adulte

Faini, Giulia 19 September 2017 (has links)
Les réseaux neuronaux sont hautement sensibles aux stimuli sensoriels pendant une fenêtre temporelle dite période critique (PC). Un des acteurs clé de la consolidation de ces réseaux est le Perineuronal Net (PNN), une matrice extracellulaire qui s’accumule au cours de la PC majoritairement autour des interneurones parvalbumin-positifs (PV). La dégradation des PNNs chez l’adulte restaure une plasticité structurale, typique de la PC. Ce projet de recherche vise à déterminer i) les propriétés neurophysiologiques des neurones PV et glutamatergiques dans la couche 4 du cortex visuel primaire de souris au cours du développement ii) de quelle façon ces propriétés sont altérées par l’accumulation des PNN. Nous avons montré, au cours du développement, une augmentation de l’excitabilité des deux types de neurones. La dégradation in vivo des PNN augmente la transmission glutamatergique et GABAergique spécifiquement sur les PV, récapitulant un état juvénile. Dégrader les PNN chez l’adulte n’affecte pas les connections unitaires inhibitrices en couche 4. Afin de comprendre les mécanismes impliqués au niveau du circuit, nous avons exprimé l’opsine sensible à la lumière ChR2 dans les neurones glutamatergiques du thalamus visuel projetant sur la couche 4 du cortex. Ainsi, une absence de PNN augmente le recrutement spécifique des PV par le thalamus, entrainant une augmentation de l’inhibition feedforward. Ces résultats sont en accord avec des expériences réalisées in vivo, au cours desquelles nous avons mesuré les potentiels évoqués en réponse à des stimuli visuels suite à une dégradation des PNN et qui indiquent une augmentation du recrutement de l’inhibition. / The maturation of sensory processing undergoes a critical period (CP), during which cortical neural circuits are sculpted and changed by experience. The closure of CP is paralleled by the accumulation of extracellular perineuronal nets (PNN) around parvalbumin (PV)-positive interneurons. The degradation of PNNs in adult animals was shown to re-open the structural plasticity typical of the CP. We aimed at defining i) the neurophysiological properties of PV cells and principal neurons in layer 4 of primary visual cortex (V1) during the establishment of the CP ii) how these properties are altered by PNN accumulation. We found a robust age-dependent increase of input-output firing relationships in both cell types. Importantly, in vivo PNN removal in adult V1 increased both excitatory and inhibitory transmission selectively onto PV, leaving their excitability intact, and recapitulating younger states. In addition, triggering plasticity in vivo by monocular deprivation did not boost the increased activity onto PV cells. Interestingly, paired recordings in layer 4 showed no changes of inhibitory unitary connections, with or without PNNs. In order to understand the circuit mechanisms underlined, we expressed the light-sensitive opsin ChR2 in the visual thalamus. We found that PNN removal increases the recruitment of PV cells by thalamocortical fibers leading to an increase of feedforward inhibition. These results are in agreement with V1 recordings in vivo of visually evoked potentials in response of increasing contrast. Indeed, PNN disruption caused a reduction of the slope of the contrast sensitivity curve, indicating a higher recruitment of inhibition.
33

Imagerie et contrôle des fonctions de l’adénohypophyse chez la souris éveillée : application à l’étude de l’unité Gonadotrope-Vasculaire / Imaging and control of adenohypophysis functions in the awake mouse : application to the study of the Gonadotroph-Vascular Unit

Hoa, Ombeline 28 November 2017 (has links)
En dépit de l'abondance de données scientifiques, les mécanismes cellulaires régulant la sécrétion du pic pré-ovulatoire de LH lors du proestrus, restent encore mal compris.Afin de pouvoir étudier les mécanismes sous-jacents à cette sécrétion, j’ai tout d’abord adapté des techniques innovantes d’imagerie fonctionnelle en microscopie de fluorescence in vivo, d’injections de vecteurs viraux dans l’hypophyse, d’optogénétique sur animal éveillé et d’immunohistofluorescence sur organe entier.J’ai ensuite montré la plasticité structurelle des cellules gonadotropes et des péricytes (cellules « murales » péri-vasculaires) lors du proestrus sur des hypophyses transparisées. Ce remodelage a permis de proposer l’existence d’une unité Gonadotrope-Vasculaire (GVU) composée des cellules gonadotropes, des capillaires fenêtrés et des péricytes dans laquelle ces derniers moduleraient le pic pré-ovulatoire de LH.La contraction des péricytes via l’activation de la Channelrhodopsine-2 a permis de mettre en évidence leur rôle dans la potentialisation de la sécrétion de LH chez des animaux libres de leurs mouvements et implantés d’une fibre optique.Des expériences de microscopie à l’aide d’une lentille GRIN implantée au-dessus de l’hypophyse ont permis, chez l’animal éveillé en configuration « tête-fixée », d’étudier le flux sanguin et l’activité calcique de cellules de la GVU exprimant GCaMP6. Cette étude a également été menée sur la face ventrale de l’hypophyse sur souris anesthésiée. Les résultats montrent une activité calcique in vivo augmentée dans les cellules endocrines hypophysaires et diminuée dans les péricytes lors d’une sécrétion de la LH induite par la GnRH. / In spite of abundance of scientific data, cellular mechanisms regulating the secretion of the pre-ovulatory LH surge during proestrus are still poorly understood.In order to study the mechanisms underlying this secretion, I adapted innovative tech-niques for in vivo fluorescence functional imaging, injection of viral vectors in the pitui-tary gland, optogenetics in awake animals and immunohistofluorescence in the whole organ.I then showed structural plasticity of gonadotroph cells and pericytes (perivascular "mural" cells) during proestrus in cleared hypophyses. This suggested the existence of a Gonadotroph-Vascular Unit (GVU) composed of gonadotroph cells, fenestrated capil-laries and pericytes, in which the latter would modulate the pre-ovulatory LH surge.Pericytes contraction via Channelrhodopsine-2 activation permitted to demonstrate their role in the sensitization of LH secretion in freely moving animals implanted with an optical fiber.Finally, blood flow and calcium activity in GVU cells expressing GCaMP6 were performed in awake « head-fixed » animals in which visualization of the pituitary gland was achievable through an implanted GRIN lens. These experiments were also conduct-ed at the ventral side of the pituitary gland in anesthetized mice. Analysis showed that in vivo calcium activity increases in endocrine cells and decreases in pericytes during GnRH-induced LH secretion.
34

Involvement of dorsomedial prefrontal projections pathways to the basolateral amygdala and ventrolateral periaqueductal grey matter in conditioned fear expression / Implication des voies de projection du cortex préfrontal dorso-médian vers l’amygdale et la substance grise periaqueducale dans l’expression des réponses conditionnées de peur

Chaudun, Fabrice 27 September 2016 (has links)
A l’heure actuelle, une des principales questions des neurosciences comportementales est de comprendre les bases neurales des apprentissages et de comprendre comment des modifications au sein de circuits neuronaux spécifiques contrôlent les changements comportementaux liés à une expérience particulière. De nombreuses études ont récemment mis en évidence le rôle important des circuits neuronaux dans les phénomènes d’apprentissages associatifs, et notamment dans la régulation des comportements de peur. Cependant, leurs caractéristiques anatomiques et fonctionnelles restent encore largement inconnues. L’une des principales fonctions des circuits neuronaux est leur capacité à adapter le comportement en fonction de la nature des informations internes ou environnementales disponibles. Malgré de nombreux progrès réalisés sur la compréhension des substrats et mécanismes neuronaux sous tendant le conditionnement de peur au sein de structures telles que l'amygdale (AMG), le cortex préfrontal dorso-médian (dmPFC) et la substance grise periaqueducale (PAG), les mécanismes neuronaux gouvernant les interactions inter-structure ainsi que le contrôle local de ces différents circuits neuronaux restent encore largement inconnus. Dans ce contexte, ce travail de thèse a eupour objectifs principaux, d’évaluer la contribution des voies de projections dmPFC-BLA et dmPFC-vlPAG dans la régulation des comportements de peur, et, d’identifier les mécanismes neuronaux sous-jacent contrôlant l'expression de la peur. Afin de répondre à ces questions, nous avons utilisé conjointement des enregistrements électrophysiologiques unitaires et de potentiels de champs couplés à des approches optogénétiques au cours de l’expression de la peur conditionnée. Nous avons pu mettre en évidence un nouveau mécanisme neuronal basé sur une oscillation cérébrale à 4 Hz entre le dmPFC et le BLA impliqué dans la synchronisation neuronale des neurones de ces deux structures nécessaire à l’expression de la peur. Nous avons aussi démontré que le dmPFC via ses projections sur le vlPAG contrôle directement l’expression de la peur. Ensemble, nos données contribuent à une meilleure compréhension des circuits neuronaux ainsi que des mécanismes du comportement de peur qui dans le futur pourront aider à une amélioration thérapeutique des troubles anxieux. / A central endeavour of modern neuroscience is to understand the neural basis of learningand how the selection of dedicated circuits modulates experience-dependent changes inbehaviour. Decades of research allowed a global understanding of the computations occurring inhard-wired networks during associative learning, in particular fear behaviour. However, brainfunctions are not only derived from hard-wired circuits, but also depend on modulation of circuitfunction. It is therefore realistic to consider that brain areas contain multiple potential circuitswhich selection is based on environmental context and internal state. Whereas the role of entirebrain areas such as the amygdala (AMG), the dorsal medial prefrontal cortex (dmPFC) or theperiaqueductal grey matter (PAG) in fear behaviour is reasonably well understood at themolecular and synaptic levels, there is a big gap in our knowledge of how fear behaviour iscontrolled at the level of defined circuits within these brain areas. More particularly, whereas thedmPFC densely project to both the basolateral amygdala (BLA) and PAG, the contributions ofthese two projections pathway during fear behaviour are largely unknown. Beside theinvolvement of these neuronal pathways in the transmission of fear related-information, theneuronal mechanisms involved in the encoding of fear behaviour within these pathways are alsovirtually unknown. In this context, the present thesis work had two main objectives. First,evaluate the contribution of the dmPFC-BLA and dmPFC-vlPAG pathways in the regulation offear behaviour, and second, identify the neuronal mechanisms controlling fear expression in thesecircuits. To achieve these goals, we used a combination of single unit and local field potentialrecordings coupled to optogenetic approaches in behaving animals submitted to a discriminativefear conditioning paradigm. Our results first, identified a novel neuronal mechanism of fear expression based on the development of 4 H oscillations within dmPFC-BLA circuits thatdetermine the dynamics of freezing behaviour and allows the long-range synchronization offiring activities to drive fear behaviour. Secondly, our results identified the precise circuitry at thelevel of the dmPFC and vlPAG that causally regulate fear behaviour. Together these data provideimportant insights into the neuronal circuits and mechanisms of fear behaviour. Ultimately thesefindings will eventually lead to a refinement of actual therapeutic strategies for pathological conditions such as anxiety disorders.
35

Bases neurales de l’apprentissage olfactif perceptif : plasticité structurale et contrôle noradrénergique / Neural basis of perceptual learning : structural plasticity and noradrenergic control

Yin, Xuming 28 September 2016 (has links)
Le champ des neurosciences connaît depuis quelques décades un développement très important dans la compréhension des corrélats neuronaux de la perception. Le cerveau adulte répond aux variations de l'environnement et à l'expérience par des modifications fonctionnelles et structurales, regroupées sous le terme générique de plasticité, plasticité qui sous-tend l'apprentissage. Cette plasticité affecte la perception sensorielle, olfactive puisque c'est cette modalité qui va nous intéresser, mais également la perception de stimuli dans d'autres modalités sensorielles. Contrairement à des convictions longtemps érigées en dogme mais maintenant dépassées sur la nature fixe du cerveau, il est établi désormais que le cerveau adulte est capable de générer tout au long de la vie de nouveaux neurones qui s'intègrent dans la circuiterie cérébrale complexe, en particulier dans le bulbe olfactif et pourraient jouer un rôle dans l'apprentissage. Des travaux antérieurs de l'équipe ont démontré que l'acquisition de l'apprentissage perceptif dépend de la présence des neurones formés chez l'adulte. Par ailleurs, les systèmes neuromodulateurs comme les systèmes noradrénergique et cholinergique innervent massivement le bulbe olfactif et en particulier les neurInhibiting noradrenergic fibers duroing post learning discrimination testing lblmocked ones cibles de la neurogenèse adulte, les interneurones granulaires. Ils sont depuis longtemps connus pour leur implication dans les processus d'apprentissage en général et olfactif en particulier. Un objectif de la thèse était de déterminer le pattern temporal et spatial de l'innervation des neurones formés chez l'adulte dans le bulbe olfactif et sa modification potentielle par l'apprentissage, par des approches comportementales combinées à des approches neuro-anatomiques. Un autre objectif était d'évaluer le rôle fonctionnel des contacts noradrénergiques mis en place par l'apprentissage en utilisant l'outil optogénétique. Les résultats indiquent que l'innervation des neurones formés chez l'adulte s'installent dès le huitième jour après la naissance des neurones pour le système cholinergique, comme pour le système noradrénergique. L'apprentissage induit une augmentation massive des contacts noradrénergiques sur les neurones formés chez l'adulte qui n'est pas retrouvée pour les fibres cholinergiques, pointant le système noradrénergique comme un acteur majeur de la plasticité induite par l'apprentissage perceptif / The field of neuroscience has experienced explosive growth over the past decade toward understanding the neural correlates of perception. More specifically, the adult brain responds to environmental experience by significant functional and structural modifications, called "neural plasticity" which underlies learning. A main issue in neuroscience is to understand the cellular basis of perceptive plasticity and subsequent behavioral adaptations. Contrary to previously held beliefs about its static nature, the adult brain is in fact capable of generating new neurons that can integrate into its complex circuitry. The birth of new neurons constitutively occurs in two specific regions of the adult mammalian brain (OB and hippocampal dentate gyrus). Adult neurogenesis is a sophisticated biological process whose function has remained a mystery to neuroscience researchers but a role in learning and memory has been proposed. Previous work in our group have shown that perceptive olfactory learning depends on adult neurogenesis. In addition, neuromodulatory systems, including noradrenergic and cholinergic systems massively innervate the olfactory bulb and more specifically the inhibitory interneurons targeted by adult neurogenesis and are long-known for their role in learning and memory. One objective of the present work was to determine the spatial and temporal pattern of the innervation by noradrenergic and cholinergic inputs of developing adult-born neurons and to investigate its modulation by learning. For that purpose, we used behavioral and neuro-anatomical approaches. Another objective was to assess the functional role of centrifugal contacts using an optogenetic approach. Results indicate that the noradrenergic innervation is selectively increased on adult born neurons following perceptual olfactory learning, a phenomenon that was not observed for cholinergic innervation, pointing the noradrenergic system as a key mechanisms involved in perceptual learning. Interestingly, noradrenergic contacts on neurons born during ontogenesis were not affected by learning, suggesting a very specific part played by adult-born neuron in learning associated plasticity. In the same brains, we have analyzed the structural plasticity induced by learning in adult-born and pre-existing neurons. The major finding is that mirroring the increased number of noradrenergic contacts, learning induced an increase in dendritic spines on adult-born, but not on pre-existing neurons
36

Development and activity of in vitro neuronal networks : learning organic chemistry through games / Développement et activité de réseaux de neurones in vitro : enseigner la chimie organique par le jeu

Vignes, Maéva 22 November 2013 (has links)
Ma thèse comporte deux grandes parties, la première en biophysique et la seconde en science de l’éducation. La première partie présente des travaux à la frontière entre neurobiologie et microfluidique. Le but de ces travaux est de pouvoir reconstruire et étudier des réseaux complexes de neurones in vitro avec une topologie de connections synaptiques bien contrôlées. Une série de micro-structures mécanique et/ou chimique ont été étudiées pour leur capacité à (i) positionner les corps cellulaires des neurones, (ii) orienter la pousse des neurites, et (iii) différencier les axones des dendrites. Un premier réseau comportant trois populations de neurones connectées en série a été reconstruit à l’intérieur d’un circuit microfluidique. Ce réseau qui mime la voie perforante de l’hippocampe pourra être exploité pour des études en physiologie ou en neuro-dégénerescence. Une méthode entièrement optique de stimulation et d’observation de l’activité neuronal a été mise au point. Elle ouvre de nouvelles portes pour étudier des processus cognitifs complexes dans des systèmes simplifiés in vitro. La seconde partie de mon travail a permis le développement et l’étude de jeux pédagogiques pour l’apprentissage de la chimie en licence. Ces jeux, qui peuvent selon les cas remplacer un cours ou une séance d’exercices, donnent des résultats prometteurs pour l’aide à la compréhension et à la mémorisation de concepts tels que la géométrie des molécules ou la réactivité entre molécules organiques. / My PhD is divided in two parts one on biophysic of neuronal networks and one on science of education. The first part present results at the frontier between neurobiology and microfluidic. The overarching goal of this work was to develop tools and methods to build and study complex neuronal networks controlling the topology of synaptic connexions. Micro-patterning techniques with mechanical and/or chemical constraints were explored regarding their capacity to (i) position cell bodies, (ii) orient neurite outgrowth and (iii) polarize neurons. For the first time, a network comprising three different neuronal populations connected in specified directions was reconstructed in a microfluidic device. This network that mimics the perforant pathway of the hippocampus can be used to study physiological rythms or neurodegenerative processes including Alzheimer’s disease. A novel and fully optical method is presented to stimulate and record neuronal activity in vitro. It opens new routes to study complex cognitive processes in simplified in vitro systems. The second part of my work present the development and assessment of educational games in chemistry at the undergraduate level. These games that can either be used to replace courses or exercises, seem promising to improve the understanding and memorization of chemistry concepts og geometries of molecules and organic reactivity.
37

Développements algorithmiques pour l'analyse et la prédiction de la structure des protéines / Novel computational developments for protein structure analysis and prediction

Pages, Guillaume 12 September 2019 (has links)
Les protéines sont omniprésentes dans les processus biologiques. Identifier leurs fonctions aide à comprendre et éventuellement à contrôler ces processus. Cependant, si la détermination de la séquence protéique est désormais une procédure de routine, il est souvent difficile d'utiliser cette information pour extraire des connaissances fonctionnelles pertinentes sur le système étudié. En effet, la fonction d'une protéine repose sur ses propriétés chimiques et mécaniques, lesquelles sont définies par sa structure. Ainsi, la prédiction, la compréhension et l'analyse de la structure des protéines sont parmi les principaux défis de la biologie moléculaire.La prédiction et l'analyse des repliements de protéines est le sujet central de cette thèse. Cependant, de nombreuses protéines sont organisées selon des assemblages qui sont symétriques dans la plupart des cas et certaines protéines contiennent des répétitions internes. La conception d'une structure avec des répétitions ou d'un assemblage protéique symétrique est souvent le moyen le plus simple pour l'évolution d'atteindre une certaine fonction. Ceci qui nous a poussé à développer des méthodes spécialement conçues pour les assemblages protéiques symétriques et les protéines avec répétitions internes. Une autre motivation derrière cette thèse était d'explorer et de faire progresser le domaine émergent de l'apprentissage profond appliqué aux données atomistiques tridimensionnelle (3D).Cette thèse s'articule autour de deux parties. Dans la première partie, nous proposons des algorithmes pour analyser la structures des assemblages symétriques de protéines. Nous commençons par définir une mesure de symétrie basée sur la distance euclidienne 3D et décrivons un algorithme permettant de calculer efficacement cette mesure et de déterminer les axes de symétrie des assemblages protéiques. Cet algorithme est capable de traiter tous les groupes ponctuels de symétrie, à savoir les symétries cycliques, dièdrales, tétraédriques, octaédriques et icosaédriques, grâce à une heuristique robuste qui perçoit la correspondance entre sous-unités asymétriques. Nous étendons ensuite les limites du problème et proposons une méthode applicable à des cartes de densité 3D. Nous abordons ce problème à l'aide d'un réseau neuronal profond (DNN), et nous proposons une méthode qui prédit l'ordre de symétrie l'axe de symétrie 3D.Ensuite, nous proposons une architecture DNN pour évaluer la qualité de modèles 3D de repliements de protéines. Nous avons entrainé le DNN en utilisant en entrée la géométrie locale autour de chaque résidu dans un modèle de protéine représenté par une carte de densité, et avons prédit les CAD-scores de ces résidus. Le DNN a été créé pour être invariant par rapport à l'orientation du modèle d'entrée. Nous avons également conçu certaines parties du DNN pour reconnaître automatiquement les propriétés des atomes et sélectionner des descripteurs pertinents. Enfin, nous analysons les descripteurs appris par le DNN. Nous montrons que notre architecture apprend effectivement des propriétés des atomes, des acides aminés et des structures moléculaires de niveau supérieur. Certaines propriétés sont déjà bien étudiées comme les éléments chimiques, les charges partielles atomiques, les propriétés des acides aminés, la structure secondaire des protéines et l'exposition au solvant. Nous démontrons également que notre réseau apprend de nouvelles caractéristiques structurelles.Cette étude présente de nouveaux outils pour la biologie structurale. Certains sont déjà utilisés dans la communauté, par les évaluateurs de CASP par example. Elle démontre également la puissance de l'apprentissage profond pour la représentation de la structure des protéines et son applicabilité aux problèmes des données 3D. / Proteins are ubiquitous for virtually all biological processes. Identifying their role helps to understand and potentially control these processes. However, even though protein sequence determination is now a routine procedure, it is often very difficult to use this information to extract relevant functional knowledge about system under study. Indeed, the function of a protein relies on a combination of its chemical and mechanical properties, which are defined by its structure. Thus, understanding, analysis and prediction of protein structure are the key challenges in molecular biology.Prediction and analysis of individual protein folds is the central topic of this thesis. However, many proteins are organized in higher-level assemblies, which are symmetric in most of the cases, and also some proteins contain internal repetitions.In many cases, designing a fold with repetitions or designing a symmetric protein assembly is the simplest way for evolution to achieve a specific function. This is because the number of combinatorial possibilities in the interactions of designed folds reduces exponentially in the symmetric cases. This motivated us to develop specific methods for symmetric protein assemblies and also for individual proteins with internal repeats. Another motivation behind this thesis was to explore and advance the emerging deep neural network field in application to atomistic 3-dimensional (3D) data.This thesis can be logically split into two parts. In the first part, we propose algorithms to analyse structures of protein assemblies, and more specifically putative structural symmetries.We start with a definition of a symmetry measure based on 3D Euclidean distance, and describe an algorithm to efficiently compute this measure, and to determine the axes of symmetry of protein assemblies. This algorithm is able to deal with all point groups, which include cyclic, dihedral, tetrahedral, octahedral and icosahedral symmetries, thanks to a robust heuristic that perceives correspondence between asymmetric subunits. We then extend the boundaries of the problem, and propose a method applicable to the atomistic structures without atom correspondence, internal symmetries, and repetitions in raw density maps. We tackle this problem using a deep neural network (DNN), and we propose a method that predicts the symmetry order and a 3D symmetry axis.Then, we extend the DNN architecture to recognise folding quality of 3D protein models. We trained the DNN using as input the local geometry around each residue in a protein model represented as a density map, and we predicted the CAD-scores of these residues. The DNN was specifically conceived to be invariant with respect to the orientation of the input model. We also designed some parts of the network to automatically recognise atom properties and robustly select features. Finally, we provide an analysis of the features learned by the DNN. We show that our architecture correctly learns atomic, amino acid, and also higher-level molecular descriptors. Some of them are rather complex, but well understood from the biophysical point of view. These include atom partial charges, atom chemical elements, properties of amino acids, protein secondary structure and atom solvent exposure. We also demonstrate that our network learns novel structural features.This study introduces novel tools for structural biology. Some of them are already used in the community, for example, by the PDBe database and CASP assessors. It also demonstrates the power of deep learning in the representation of protein structure and shows applicability of DNNs to computational tasks that involve 3D data.
38

Behavioral and synaptic consequences following removal of the Il1rapl1 gene in mice, a model of intellectual disability / Conséquences comportementales et synaptiques de l’absence de la protéine IL1RAPL1 chez la souris, un modèle de désordre intellectuel

Houbaert, Xander 28 November 2014 (has links)
Les désordres intellectuels (DI) comprennent une collection hétérogène de désordresneurodéveloppementaux qui émergent pendant l’enfance. Ils ont une incidence de 1 à 3% dansla population et sont associés avec des déficits dans les fonctions mentales et adaptives. Denombreuses mutations ont été identifiées dans des gènes codant pour des protéines quiremplissent des fonctions biologiques très diverses dans le cerveau. Parmi ces protéines,certaines sont enrichies à la synapse, supposant que les déficits cognitifs associés aux DIpourraient être reliés à des déficits synaptiques. L’objectif scientifique de notre équipe et decomprendre le rôle de certaines protéines dans la fonction synaptique et la cognition enutilisant des souris génétiquement modifiées portant des mutations dans le gènecorrespondant. Je me suis concentré sur Il1rapl1, un gène codant pour la protéine Interleukinreceptor-accessory-protein-like-1. Des mutations ou micro-délétions dans ce gène sont liés audéveloppement de DI chez l’homme. Dans les neurones, Il1rapl1 code pour une protéinetransmembranaire qui serait impliquée dans la formation et/ou la stabilisation de synapsesexcitatrices. Les conséquences de l’absence d’IL1RAPL1 à des niveaux plus intégrés restaientpeu étudiées lors du début de ma thèse. J’ai utilisé une souris déficiente pour IL1RAPL1 (KO) afinde comprendre le lien entre les déficits comportementaux et la fonction synaptique. Pour cela,j’ai soumis des souris KO à des taches comportementales de peur conditionnée. J’ai ensuiteutilisé une combinaison d’approches in vitro, ex vivo et in vivo afin de caractériser la fonctionsynaptique dans les circuits neuronaux dédiés : l’amygdale latérale et basolatérale. Desenregistrements electrophysiologiques ont montré une dérégulation de la balance entre latransmission inhibitrice et excitatrice (I/E) dans l’amygdale de souris Il1rapl1 KO, causant ainsides déficits dans la capacité d’acquérir et d’exprimer la mémoire de peur conditionnée. Lacorrection de ce déficit synaptique in vivo par pharmacologie ou par optogénétique a permis derestaurer le comportement chez les souris KO. / Intellectual disability (ID) comprises a highly heterogeneous collection of neurodevelopmentaldisorders that arise during childhood. They have an incidence of 1-3% in the population withimpairments in mental and adaptive functions. While the etiologies of IDs are thought to bevery heterogeneous, a significant proportion of ID has genetic origins. Mutations in single IDgenes lead to dysfunctions in proteins that fulfill highly different biological functions in thebrain. Interestingly, ID-related proteins are often found enriched at synapses, suggesting thatcognitive impairments defining ID could be related to alterations of synaptic function. The maingoal of our research team is to understand the role of ID-related proteins in synaptic functionand cognition using mouse models bearing gene mutations associated to ID in humans. Myresearch focused on the study of Il1rapl1, a gene coding for the Interleukin-receptor-accessoryprotein-like-1 protein. Micro-deletions or point mutations in this gene are directly linked to thedevelopment of ID and autism spectrum disorder in humans. In neurons, Il1rapl1 encodes atrans-membrane protein and several in vitro experiments point to its important role in thedifferentiation and formation/stabilization of excitatory synapses trough interactions withpresynaptic, trans-synaptic or postsynaptic partners. However, the consequences of Il1rapl1deficiency at more integrated levels remains poorly understood. The principal objective of mythesis is to explore the link between synaptic deficits and behavioral impairments in Il1rapl1-deficient mice. To achieve that, wild-type and mutant animals were first submitted to fearlearning tasks. I then used a combination of in vivo, ex vivo and in vitro functional essays tocharacterize synaptic functions in behaviorally relevant neuronal circuits. Ultimately, ourworking hypothesis were challenged in vivo by pharmacological and optogenetic approaches tonormalize behavioral deficits in Il1rapl1 KO mice. Altogether my work demonstrates thatInhibitory/Excitatory imbalances associated with the absence of Il1rapl1 impaired both thecapacity to form new memories as well as the expression of previously formed memories.
39

Modulation nicotinique des neurones dopaminergiques de l'aire tegmentale ventrale : une approche optogénétique et opto-pharmacologique / Nicotinic modulation of midbrain dopamine neurons : an optogenetic and opto- pharmacological approach

Durand-de Cuttoli, Romain 25 October 2018 (has links)
L’addiction à la nicotine est une pathologie qui concerne un tiers de la population adulte mondiale et qui est souvent associée avec d’autres troubles psychiatriques tels que la dépression, la schizophrénie ou encore les troubles liés au stress. Chaque année, près de 8 millions de personnes décèdent des conséquences de la consommation de tabac. Cette pathologie constitue la première cause de morts évitables dans le monde. Ce phénomène de dépendance au tabac est induit par la nicotine, principale substance addictive et psychoactive du tabac, qui va agir sur les récepteurs nicotiniques de l’acétylcholine (nAChR) et ainsi détourner le fonctionnement normal de différents circuits neuronaux. De manière aigüe, la nicotine agit directement sur les nAChR ce qui va globalement activer les réseaux neuronaux. A plus long terme, elle va induire une plasticité synaptique et perturber la transmission nicotinique endogène. La nicotine va notamment détourner le système dopaminergique, acteur majeur de l’apprentissage par renforcement, de la motivation et de l’évaluation de la récompense. Ces modifications neuronales conduisent non seulement au renforcement mais entrainent aussi une perturbation de différents traits comportementaux (prise de décision, exploration, vulnérabilité au stress, etc.). Ces relations entre symptômes et traits pourraient expliquer les fortes comorbidités observées entre la dépendance aux drogues d’abus, et particulièrement au tabac, et d’autres manifestations pathologiques telles que les troubles liés au stress. Au cours de cette thèse j’ai tout d’abord abordé les bases neurophysiologiques qui sous-tendent ces comorbidités, en proposant la dopamine comme un substrat commun aux effets du stress social, de la nicotine et des perturbations de la prise de décision associées (impulsivité, sensibilité à la récompense, évaluation du risque, etc.). J’ai pu montrer que l’augmentation de l’activité des neurones dopaminergiques observée après une exposition à la nicotine ou à un stress social est responsable des perturbations des comportements de choix chez la souris. En effet, nous avons pu reproduire ces altérations comportementales en élevant artificiellement le niveau d’activité des neurones dopaminergiques à l’aide de stimulations optogénétiques. La dissection des mécanismes par lesquels la nicotine détourne les circuits neuronaux se heurte aujourd’hui à un manque d’outils permettant une manipulation sélective, réversible et avec une résolution spatio-temporelle suffisante des acteurs moléculaires impliqués. Une deuxième partie de mon travail de thèse a consisté en l’implémentation in vivo chez la souris, de la pharmacologie optogénétique pour les nAChR. La photo-inhibition des nAChR contenant la sous-unité beta2 nous a permis de mettre en évidence l’impact de la modulation cholinergique endogène sur l’activité des neurones dopaminergiques. Nous avons pu, en outre, inhiber la réponse de ces mêmes neurones à l’injection intraveineuse aiguë de nicotine et le renforcement associé dans une tâche de préférence de place conditionnée pour la nicotine. / Nicotine addiction is a condition that affects one third of the world's adult population and is often associated with other psychiatric disorders such as schizophrenia, mood- and stress-related disorders. Every year, nearly 8 million people die from the consequences of tobacco use. This pathology is the leading cause of preventable death in the world. This phenomenon of tobacco dependence is induced by nicotine, the main addictive and psychoactive substance in tobacco, which acts on nicotinic acetylcholine receptors (nAChRs) and thus hijacks the normal functioning of various neuronal circuits. Acute nicotine directly acts on nAChRs and activates neural networks. In the longer term, it will induce synaptic plasticity and disrupt endogenous nicotinic transmission. In particular, nicotine disrupts the dopaminergic system, a key player in reinforcement learning, motivation and reward evaluation. These neural changes not only lead to reinforcement but also to a disruption of different behavioral traits such as decision-making, exploration, vulnerability to stress, etc. These relationships between symptoms and features could explain the strong comorbidities observed between substance abuse, and particularly tobacco addiction, and other pathologies such as stress-related disorders. During this thesis, I first addressed the neurophysiological bases underlying these comorbidities, by proposing dopamine as a common substrate for the effects of social stress, nicotine and associated decision-making disorders (impulsivity, reward sensitivity, risk assessment, etc.). I have shown that the increase in dopamine neuron activity observed after exposure to nicotine or social stress is responsible for disrupting choice behavior in mice. Indeed, we could reproduce these behavioral maladaptations by artificially increasing the activity level of dopaminergic neurons using optogenetic stimuli. The dissection of the mechanisms by which nicotine diverts neuronal circuits is currently hampered by a lack of tools for selective, reversible, spatially and temporally precise manipulation of the molecular players involved. A second part of my thesis work consisted in the in vivo implementation in mice of optogenetic pharmacology for nAChR. The photoinhibition of beta2-containing nAChRs revealed the impact of endogenous cholinergic modulation on the activity of dopaminergic neurons. We could optically inhibit the response of these same neurons to acute intravenous injection of nicotine and the associated reinforcement in a task of conditioned place preference for nicotine.
40

Rôle des neurones sérotoninergiques de la voie raphé-hippocampe ventral dans les comportements anxieux

Perreault, Félix 08 1900 (has links)
Il y a longtemps qu’on a attribué à l’hippocampe un rôle central dans la mémoire, mais ce n’est pas son unique rôle. Un nombre grandissant d’études attestent que l’hippocampe peut être séparé en deux régions, dorsale et ventrale, qui sont fonctionnellement différentes. La partie dorsale de l’hippocampe est responsable du rôle classique dans la mémoire spatiale et contextuelle, alors que la région ventrale de l’hippocampe est importante dans l’expression de l’anxiété et de la motivation, entre autres. Les projections des noyaux du raphé, l’unique source d’afférences sérotoninergiques de l’hippocampe, auraient un rôle régulateur sur ses fonctions, dont le comportement anxieux. Toutefois, les fonctions de la projection sérotoninergique raphé-hippocampe ventral ne sont pas entièrement caractérisées et les différents rôles des sous-populations de neurones sérotoninergiques au sein même de la projection raphé-hippocampe ventral sont peu connus. Dans ce projet de recherche, nous avons utilisé des tests comportementaux et des outils optogénétiques, afin de déterminer le rôle de la projection sérotoninergique raphé-hippocampe ventral dans le comportement d’aversion. Notre hypothèse est que la sérotonine régule l’anxiété en agissant sur l’hippocampe ventral via cette projection. Nous démontrons entre autres que l’activation de la projection sérotoninergique raphé-hippocampe ventral induit une hausse de l’anxiété, mais spécifiquement chez les femelles. Nous démontrons aussi que l’activation de la projection réduit la locomotion. Nos données offrent un nouveau point de vue sur le rôle du raphé médian dans l’anxiété ainsi que sur l’importance du sexe dans l’expression du comportement anxieux. / It has been known for a long time that the hippocampus has a central role in memory, but it isn’t its sole function. A growing number of studies are showing that the hippocampus can be split in two regions, dorsal and ventral, that are functionally different. The dorsal part is responsible for the classic and well-known role of the hippocampus in spatial and contextual memory, while the ventral region is important for the expression of anxiety and motivation, among other roles. The only serotonergic input of the hippocampus are the raphe nuclei and it has been suggested that it has a regulatory effect over its functions, such as anxiety. Nonetheless, the functions of the raphe-ventral hippocampus serotonergic projection are not fully characterized and sub-populations of serotonergic neurons inside the projection itself aren’t known. In this research project, we used behavioral tests and optogenetic tools to determine whether the raphe to ventral hippocampus serotonergic projection is able to influence aversive behaviors. Our hypothesis is that serotonin regulates anxiety through its influence on the ventral hippocampus via the raphe-ventral hippocampus serotonergic projection. We found that optogenetic activation of the projection induces heightened anxiety, but only in female mice. Our data offer new insight as to how the median raphe regulates anxiety and the importance of sex in the expression of anxiety.

Page generated in 0.0468 seconds