• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 19
  • 7
  • 5
  • 4
  • 2
  • Tagged with
  • 69
  • 69
  • 19
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design and Fabrication of Nanostructures by Layer-by-Layer Assembly for Organic Photovoltaic Devices / 交互吸着法による有機薄膜太陽電池のナノ構造の設計と構築

Masuda, Koji 23 July 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15613号 / 工博第3302号 / 新制||工||1498(附属図書館) / 28140 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 伊藤 紳三郎, 教授 赤木 和夫, 教授 辻井 敬亘 / 学位規則第4条第1項該当
32

Novel aromatic dendritic-co-poly(3-hexylthiophene) composites for photovoltaic cell application

Ramoroka, Morongwa Emmanuel January 2021 (has links)
Philosophiae Doctor - PhD / Fossil fuels are part of fuels that are formed from natural processes and they are called non-renewable sources of energy. These include natural gas, coal and oil. They have been used for decades to produce energy globally. However, there are some factors that related with the use of fossil fuels which results in an increase in the requirement of large amounts of energy. In addition, the use of fossil fuels as energy source has a negative impact on the environment and they cannot be reused. It is expected that at some point they will run out. Thus, a need for a renewable, clean and plentiful source of energy is urgent. Solar energy is one of the energy sources that may overcome fossil fuel drawbacks.
33

Molecular Structures and Device Properties of Organic Solar Cells

Mao, Zhenghao 11 June 2014 (has links)
No description available.
34

Thiophene Derivative Photovoltaics : Device Fabrication, Optimization and Study of Charge Transport Characteristics

Swathi, S K January 2013 (has links) (PDF)
In the recent years area organic photovoltaics is generating a lot of interests because whole process of synthesis and fabrication is less energy intensive process as well as it is cost effective compared to conventional inorganic Si based photovoltaic technology. This work mainly deals with the fabrication and optimization of device fabrication conditions for organic photovoltaic materials. In first part of the work, the solar cell fabrication conditions were optimized for the commonly used system P3HT – PCBM. The fabricated device was optimized for the solvents used for the active material, concentration of the active material solution, donor- acceptor ratio of the active material, annealing conditions of the active layer and the metal evaporation conditions for the cathode. All the optimization procedures were carried out in controlled atmosphere to minimize the environmental effect inference during fabrication of the solar cell devices. All the characterization was carried out at ambient conditions. The efficiency of the solar cell was improved from 0.009% to 6.2%. the environmental stability of the fabricated devices were carried out after encapsulating it with epoxy based resin in both ambient conditions as well as extreme conditions like 85% RH at 25°C inside the humidity chamber. It was observed that both the data matches well with each other indicating proper encapsulation required to safe guard the device for the better performance over the period of time. Second part of this work mainly deals with understanding the structure property relationship of thiophene based donor- acceptor- donor molecule 2,5-dithienyl-3,4-(1,8-naphthylene) cyclopentadienone (DTCPA), which is highly crystalline, low band gap organic molecule which absorbs over entire visible region of the solar spectra. DTCPA crystals of various morphologies were prepared by various recrystallization routes. It was observed that macro scale morphology of these crystals differs from each other. Also depending on the method of recrystallization sizes of the crystals also varies. All the recrystallized DTCPA shows strong orientation toward (001) direction. However, it was observed that lattice parameters of these crystals slightly differ from each other owing to the recrystallization methodology. These variations in crystal parameters are more than 0.02 which is significant. It was also observed that the crystallite sizes depend on the recrystallization routes. Slow evaporation of concentrated solution (SEC) grown crystals has the larger crystallite size of 170nm. It was observed that absorption range of these crystals slightly differ from each other owing to the change in the crystallite sizes and crystal parameters. Third part of this work deals with the fabrication and optimization of thermal evaporation process of DTCPA for photovoltaic applications. DTCPA is stable at higher temperatures as well as has sharp melting point which make it ideal candidate for thermal evaporation. In this work films of DTCPA were fabricated for various evaporation rates by thermal evaporation technique. Chemical integrity of the molecules upon evaporation is found to be intact as observed from FTIR spectroscopy. XRD shows that at lower (25 W/m2) as well as higher (40 W/m2) films are oriented to (001), (400) as well as (311) directions, at 30 W/m2 and 35 W/m2 there is a strong orientation towards (311) and (001) directions respectively. Photo luminescence studies indicate that there is strong 410 nm emission for films deposited at the power of 25 W/m2 and 40 W/m2. Microscopic studies confirm that morphology is dependent on the deposition rates as it changes with the change in deposition rate. This in turn reflects in the device characteristics of these films. It was observed that films deposited at high deposition rates show better device characteristics with high VOC and current density values. All these device fabrication and characterizations were carried out in ambient conditions. Fourth part of this work deals with P3HT - DTCPA composites which exhibit wide range of light absorption. It was observed that DTCPA act as nucleating centers for the P3HT molecules and increases crystallinity in the composite. Furthermore, DTCPA helps in exciton separation because of donor and acceptor moieties present in the molecule. It also helps in charge transportation because of its crystalline nature and further it induces molecular ordering in the P3HT matrix. The band diagram of P3HT- DTCPA suggests that the band edges of both materials are ideal for charge separation. In addition, crystalline nature of the DTCPA molecule helps in effective charge transportation. J-V characteristics shows that there is large built in potential in the devices from these blends leading to large Voc. Composites with lower DTCPA loadings show higher efficiency than with higher loadings. These devices were prepared in ambient conditions and needs to be optimized for obtaining better device properties. In the fifth part of the work two types of system were studied to understand the band edge matching on the photovoltaic properties, carbazole based copolymers and DTCPA based copolymers. In the case of carbazole based copolymers it was observed that by copolymerizing carbazole with thiophene based derivatives lowers the band gap and modifies the HOMO and LUMO levels for better suit for the photovoltaic device fabrication. It was observed that that is two orders of improvements in the efficiency by co polymerizing carbazole with benzothiodizole as improves the JSC and VOC. Also the copolymerization of carbazole with both benzothiodiazole and bithiophene results in better light harvesting as the optical band gap was lowered. In the case of DTCPA copolymers with DTBT and DHTBT as both are random copolymers the solubility was low as well as their HOMO band edge was mismatched with the PEDOT: PSS which is a hole transport layer. However, the alternate polymerization of DTCPA with DTBT improved the band edge matching and also the solubility. As a result there was tenfold improvement in the charge collection and hence the efficiency was improved from 0.02% to 2.4%. Many of the conducting polymers have good material property but poor filmability. In the sixth part of this work deals with fabrication of device quality films by alternate deposition technique like pulsed laser deposition. Two types of system were studied in this work (i) polypyrrole- MWCNT nanocomposites and (ii) Poly DTCPA polymer. In both the cases it was observed that chemical integrity of the polymer retained during ablation. PolyDTCPA films were fabricated by pulsed laser deposition by both IR (Nd-YAG) and UV (KrF) laser source. Morphological studies indicate that IR laser ablated films were particulate in nature whereas UV laser ablated films were grown as continuous layers as polyDTCPA absorbs better in UV region. As a result the IV characteristics indicate that IR laser ablated films are resistive in nature and UV laser ablated films are good rectifiers indicating the suitability of the process for fabrication of device quality films.
35

OPTIMIZATION OF THE OPTICAL AND ELECTROCHEMICAL PROPERTIES OF DONOR-ACCEPTOR COPOLYMERS THROUGH FUNCTIONAL GROUP AND SIDE CHAIN MODIFICATION

Seger, Mark J. 01 January 2013 (has links)
Donor-acceptor copolymers have received a great deal of attention for application as organic semiconductors, in particular as the active layers in low-cost consumer electronics. The functional groups grafted to the polymer backbones generally dictate the molecular orbital energies of the final materials as well as aid in self-assembly. Additionally, the side chains attached to these functional groups not only dictate the solubility of the final materials, but also their morphological characteristics. The bulk of the research presented in this dissertation focuses on the synthesis and structure-property relationships of polymers containing novel acceptor motifs. Chapter 2 focuses on the synthesis of 1,2-disubstituted cyanoarene monomers as the acceptor motif for copolymerization with known donors. It was found that cyanation of both benzene and thiophene aromatic cores resulted in a decrease of the molecular orbital energy levels. Additionally, the small size of this functional group allowed favorable self-assembly and close π-stacking to occur relative to related acceptor cores carrying alkyl side chains as evidenced by UV-Vis and WAXD data. Chapter 3 describes the systematic variation of side chain branching length and position within a series of phthalimide-based polymers. Branching of the side chains on bithiophene donor units resulted in the expected increase in solubility for these materials. Furthermore, a correlation was found between the branching position, size, and the HOMO energy levels for the polymers. Additionally, it was demonstrated that branching the alkyl side chains in close proximity to polymer backbones does not disrupt conjugation in these systems. A novel acceptor motif based on the 1,3-indanedione unit is presented in Chapter 4. Despite the stronger electron withdrawing capability of this functional group relativeto phthalimide, it was found that polymers based on this unit have the same HOMO molecular orbital energy levels as those presented in Chapter 3. It was found, however, the presence of orthogonal side chains greatly enhanced the solubility of the final polymers. Additionally, UV-Vis and WAXD measurements revealed that thermal annealing had a profound effect on the ordering of these polymers. Despite the presence of orthogonal side chains, long range order and close π-stacking distances were still achieved with these materials. Finally, alkynyl “spacers” were used in Chapter 5 to separate the solubilizing alkyl side chains from the polymer backbones on bithiophene donor monomers. The alkynyl groups allowed for conjugated polymer backbones to be achieved as well as low HOMO energy levels. A correlation between the side chain size, π-stacking distances and HOMO-LUMO energy levels was measured in this polymer series.
36

Characterisation of organic materials for photovoltaic devices

Lewis, Andrew J. January 2006 (has links)
This thesis presents an investigation into a wide range of potential materials for organic photovoltaic (PV) devices. A variety of optical techniques are used to define physical parameters for each material such as the photoluminescence quantum yield (PLQY), absorption coefficient and exciton diffusion length. Electrical characterisation is used to determine the optimal structure for devices fabricated with these materials. A number of novel materials are presented in this thesis. These include new polymers, both soluble and precursor, and a relatively new class of material, the conjugated dendrimer. These are highly configurable branching molecular structures that enable fine tuning of material properties. Work on polymers presented in this thesis investigates how such materials can be improved by testing the effect of small changes to their molecular structure. One of these changes had significant effects upon the overall material characteristics. The introduction of a dipole across a polymer successfully created a charge separating material without the need for an extra species such as C60 to be present. The introduction of the conjugated dendrimer to PV applications allows significant scope for molecular engineering. Dendrimers enable tight control over certain aspects of the molecular properties. Small changes can be made such as colour tuning or solubility that enable optimisation to be performed on the molecular level, rather than on device structure. Such changes produced significantly higher internal quantum efficiencies (> 90%) than typical polymer devices and offer the prospect of power conversion efficiencies in excess of 10%. Time-resolved luminescence (TRL) spectroscopy was used to characterise the behaviour of photogenerated excitons within organic films. The investigation of exciton diffusion length was performed upon two polymers, each utilising two different time-resolved methods; diffusion to a quencher and exciton-exciton annihilation. It was found that diffusion in polythiophene films is anisotropic and the photoluminescence lifetime is dependent upon film thickness. This is explained by the formation of self-ordered microstructures during the spin coating process. Data modelling was performed which took into account both the thickness variation and the interaction of excitons with a quenching interface producing a much more realistic approach than previously published work.
37

ACENES, HETEROACENES AND ANALOGOUS MOLECULES FOR ORGANIC PHOTOVOLTAIC AND FIELD EFFECT TRANSISTOR APPLICATIONS

Granger, Devin B. 01 January 2017 (has links)
Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have likewise been investigated. Functionalization of acene compounds by placement of groups around the molecule affects the way in which molecules interact in the solid state, in addition to the energetics of the molecule. The use of electron donating or electron withdrawing groups affects the frontier molecular orbitals and thus affects the optical and electronic gaps of the molecules. The use of bulky side groups such as alkylsilylethynyl groups allows for crystal engineering of molecular aggregates, and changing the volume and dimensions of the alkylsilyl groups affects the intermolecular interactions and thus changes the packing motif. In chapter 2, a series of tetracene and pentacene molecules with strongly electron withdrawing groups is described. The investigation focuses on the change in energetics of the frontier molecular orbitals between the base acene and the nitrile and dicyanovinyl derivatives as well as the differences between the pentacene and tetracene molecules. The differences in close packing motifs through use of bulky alkylsilylethynyl groups is also discussed in relation to electron acceptor material design and bulk heterojunction organic photovoltaic characteristics. Chapter 3 focuses on molecular acceptor and donor molecules for bulk heterojunction organic photovoltaics based on anthrathiophene and benzo[1,2-b:4,5-b’]dithiophene central units like literature molecules containing fluorene and dithieno[2,3-b:2’,3’-d]silole cores. The synthetic strategies of developing reduced symmetry benzo[1,2-b:4,5-b’]dithiophene to study the effect of substitution around the central unit is also described. The optical and electronic properties of the donors and acceptors are described along with the performance and characteristics of devices employing these molecules. The final two data chapters focus on new nitrogen containing polycyclic hydrocarbons containing indolizine and (2.2.2) cyclazine units. The optical, electronic and other physical properties of these molecules are explored, in addition to the synthetic strategies for incorporating the indolizine and cyclazine units. By use of alkylsilylethynyl groups, crystal engineering was investigated for the benzo[2,3-b:5,6-b’]diindolizine chromophore described in chapter 4 to target the 2-D “brick-work” packing motif for application in field effect transistor devices. Optical and electronic properties of the cyclazine end-capped acene molecules described in chapter 5 were investigated and described in relation to the base acene molecules. In both cases, density functional theory calculations were conducted to better understand unexpected optical properties of these molecules, which are like the linear acene series despite the non-linear attachment.
38

Formulation et impression d'encres pour l'élaboration par impression jet d'encre de modules photovoltaïques organiques / Ink formulation and printing for the elaboration by inkjet printing of organic photovoltaic modules

Chaperon, Mélodie 22 November 2016 (has links)
Les performances des dispositifs photovoltaïques organiques (OPV) se sont considérablement améliorées au cours de la dernière décennie. Compte tenu de ces avancées, il est envisageable de transférer cette technologie développée au laboratoire à l’échelle industrielle. Le dépôt de la structure multicouche par le procédé d’impression jet d’encre est le moyen idéal de produire des dispositifs sur mesure, flexibles et potentiellement à faible coût. L’objectif de cette thèse a ainsi été de comprendre et de maitriser l’influence de la formulation des encres sur le procédé d’impression, en allant de l’éjection jusqu’aux performances photovoltaïques des couches imprimées. Les paramètres améliorant la qualité d’éjection ont tout d’abord été déterminés, puis ceux favorisant la mouillabilité. A partir de ces données, les encres ont été formulées pour que leurs propriétés physico-chimiques répondent à ces exigences. Ces nouvelles formulations ont ainsi permis d’optimiser la qualité d’éjection et d’assurer l’obtention d’une couche imprimée uniforme et compatible pour leur intégration en dispositifs OPV. Les couches obtenues après optimisation de la stratégie d’impression se sont avérées aussi performantes que celles réalisées par spin coating, procédé laboratoire de référence. Les avancées mises au point dans ces travaux, en termes de maitrise de la formulation et du procédé jet d’encre, ont contribué à l’amélioration de chacune des couches imprimées du dispositif. D’autre part, la méthodologie mise au point au cours de ce travail pourra s’appliquer à d’autres technologies photovoltaïques, ainsi qu’au domaine de l’électronique organique imprimée / The performances of organic photovoltaic devices (OPV) have been considerably improved over the last decade. These developments allow to scale up the technologies developed at the laboratory scale to the industrial one. For the elaboration of multilayered architectures, inkjet printing method is the ideal way to produce custom-made devices which could be also flexible and potentially low cost. The purpose of this PhD was to understand and to master the influence of ink formulation on the printing process, from the ejection step to the photovoltaic performance characterization of the printed layers. Parameters improving the ejection quality were first determined followed by those making the wettability easier. The inks have been then formulated to ensure that their physicochemical properties meet the aforementioned requirements. These new formulations enabled to optimize the quality of the ejection quality and to ensure uniform printed layers compatible with their integration in OPV devices. After optimization of the printing strategies, the obtained layers proved to be as efficient as those made by spin coating process (reference process at laboratory scale). The advances reached within in this work, in terms of formulations and processes, contributed to the improvement of each inkjet printed layers of the device. Furthermore, the methodology developed here could be applied in the near future either to other photovoltaic technologies and to organic printed electronics.
39

Vers une amélioration des performances et de la durabilité de cellules photovoltaïques organiques par l'application d'un film composite multifonctionnel / Toward an improvement of organic solar cells' lifetime and stability by the application of a multifunctional composite film

Perthue, Anthony 25 February 2014 (has links)
Ce travail est consacré à l’étude du comportement photochimique d’un encapsulant multifonctionnel de cellules photovoltaïques organiques (CPO) dont la finalité est d’augmenter à la fois la durée de vie et le rendement de conversion des cellules. L’étude rapportée dans ce manuscrit porte sur le développement d’un revêtement permettant la conversion lumineuse du rayonnement UV solaire, ce dernier étant un facteur important de dégradation des CPO à base de P3HT et ne contribuant que faiblement à la conversion photovoltaïque. Dans un premier temps cette étude a porté sur l’élaboration d’une couche de conversion à partir d’une matrice polymère en EVA et d’une charge luminescente inorganique (SrAl2O4 : Eu2+, Dy3+). Dans un second temps, l’évolution des propriétés physiques et chimiques de cette couche de conversion sous irradiation à des longueurs d’onde supérieures à 300 nm a été étudiée. La présence des charges s’est révélée être un facteur pro-dégradant des films composites, sans pour autant que le mécanisme de dégradation du polymère ne soit affecté. L’étude des conditions de propagation de la lumière dans les films diffusants par l’application de la théorie de Mie a mis en évidence une possible augmentation du trajet optique des photons dans certains films composites. Ce phénomène pourrait contribuer à expliquer l’origine du comportement photochimique particulier des films étudiés. C’est finalement une preuve de concept qui a été recherchée pour l’utilisation d’un revêtement multifonctionnel pour l’amélioration et la conservation des propriétés de conversion d’une CPO à base de P3HT. / This work is devoted to the study of the photochemical behavior of a multifunctional coating dedicated to the encapsulation of organic solar cells (OSC), elaborated with the aim of improving both the lifetime of the cells and their efficiency. The study reported in this manuscript focuses on the development of a coating allowing the conversion of UV sunlight, this last greatly damaging P3HT based OSC and poorly contributing to the photovoltaic conversion. A composite film was then elaborated by incorporating an inorganic luminescent filler (SrAl2O4 : Eu2+, Dy3+) in Ethyl Vinyl Acetate copolymer (EVA). The modifications of chemical and physical properties of these films were investigated upon irradiation using wavelengths beyond 300 nm. The presence of fillers was revealed to be a pro-degrading factor of the composite films, without existence of any change of the degradation mechanism of the polymer. The propagation of light within these films was carefully investigated by applying Mie theory. The results highlight a possible increase of the light optical path in composite films due to scattering. This phenomenon might contribute to explain the photochemical behavior of the studied films. At last, a proof of concept was searched for the design of multifunctional coatings able to increase and preserve the conversion properties of a P3HT based OSC.
40

Síntese de grafenos quimicamente modificados e aplicação em células fotovoltaicas orgânicas / Synthesis of chemically modified graphenes and application in organic photovoltaic cells

Saker Neto, Nicolau, 1989- 26 August 2018 (has links)
Orientador: Ana Flávia Nogueira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T15:49:22Z (GMT). No. of bitstreams: 1 SakerNeto_Nicolau_M.pdf: 15094468 bytes, checksum: d3c20b6e7dbd840a984fe7d8b1b365a8 (MD5) Previous issue date: 2014 / Resumo: Entre as alternativas promissoras para a produção de energia elétrica de modo econômico e ambientalmente sustentável está o aproveitamento da energia luminosa do Sol pelo efeito fotovoltaico. Células fotovoltaicas orgânicas fazem parte da mais nova geração de células solares, e prometem ser produzidas em larga escala a custo reduzido. Entretanto, células orgânicas atualmente estão limitadas por eficiências comparativamente baixas. O objetivo deste trabalho é introduzir derivados de grafeno em células solares orgânicas poliméricas como aceitador de elétrons e transportadores de cargas na camada absorvedora de luz, em substituição parcial ou total aos atuais materiais mais empregados, derivados de fulerenos C60 e C70. Óxido de grafeno (GO) foi obtido a partir da oxidação de grafite mineral utilizando-se o método de Hummers com modificações. Amostras de grafenos quimicamente modificados (CMGs) foram sintetizadas pela reação direta de dispersões de óxido de grafeno com ácido 2-tiofenoacético (TAA) por uma esterificação de Steglich, ou após um tratamento de óxido de grafeno em meio básico com hidróxido de tetrabutilamônio (TBAH). Os CMGs apresentaram funcionalização bastante limitada, tendo ocorrido principalmente uma desoxigenação dos derivados de grafeno. Ainda assim, os CMGs puderam ser dispersos no solvente usado para a preparação da camada absorvedora de luz, 1,2-diclorobenzeno. Os materiais sintetizados foram aplicados em células poliméricas baseadas no polímero poli(3-hexiltiofeno) (P3HT) e no derivado de fulereno [6,6]-fenil-C71-butanoato de metila (PC71BM), e os parâmetros fotovoltaicos resultantes foram obtidos. As eficiências de conversão fotovoltaicas em células contendo CMGs foram potencialmente limitadas pelo processo de desoxigenação / Abstract: Among the promising alternatives for the economically and environmentally sustainable production of electrical energy is the harnessing of the Sun's luminous energy by the photovoltaic effect. Organic photovoltaic cells are part of the newest generation of solar cells, promising large-scale production at reduced costs. However, organic cells are currently limited by comparatively low efficiencies. The objective of this work is to introduce graphene derivatives in polymer organic solar cells as electron acceptors and charge transporters in the light-absorbing layer, partially or fully replacing the currently most used materials, derivatives of C60 and C70 fullerenes. Graphene oxide (GO) was obtained by the oxidation of mineral graphite using a modified Hummers' method. Samples of chemically modified graphenes (CMGs) were synthesized by the direct reaction of graphene oxide dispersions with 2-thiopheneacetic acid (TAA) via Steglich esterification, or after treatment of graphene oxide in basic medium with tetrabutylammonium hydroxide (TBAH). The CMGs showed very limited functionalization and the main occurrence was a deoxygenation of the graphene derivatives. Still, the CMGs were dispersible in the solvent used for the preparation of the light-absorbing layer, 1,2-dichlorobenzene. The synthesized materials were applied in polymer cells based on the polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C71-butyl methyl ester (PC71BM) and the resulting photovoltaic parameters were obtained. The photovoltaic conversion efficiencies for cells containing CMGs were potentially limited by the deoxygenation process / Mestrado / Quimica Organica / Mestre em Química

Page generated in 0.0382 seconds