• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 30
  • 18
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Identification in Financial Models with Time-Dependent Volatility and Stochastic Drift Components

Krämer, Romy 15 June 2007 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Parameteridentifikation in finanzmathematischen Modellen, welche sich durch eine zeitabhängige Volatilitätsfunktion und stochastische Driftkomponente auszeichnen. Als Referenzmodell wird eine Variante des Bivariaten Ornstein-Uhlenbeck-Modells betrachtet. Ziel ist es, die zeitabhängige Volatilitätsfunktion sowohl in der Vergangenheit als auch für ein kleines zukünftiges Zeitintervall zu identifizieren. Weiterhin sollen einige reellwertige Parameter, welche die stochastische Drift beschreiben, bestimmt werden. Dabei steht nicht die Anpassung des betrachteten Modells an reale Aktienpreisdaten im Vordergrund sondern eine mathematische Untersuchung der Chancen und Risiken der betrachteten Schätzverfahren. Als Daten können Aktienpreise und Optionspreise beobachtet werden. Aus hochfrequenten Aktienpreisdaten wird mittels Wavelet-Projektion die (quadrierte) Volatilitätsfunktion auf einem vergangenen Zeitintervall geschätzt. Mit der so bestimmten Volatilitätsfunktion und einigen Aktienpreisen können anschließend die reellwertigen Parameter mit Hilfe der Maximum-Likelihood-Methode bestimmt werden, wobei die Likelihoodfunktion mit Hilfe des Kalman Filters berechnet werden kann. Die Identifikation der Volatilitätsfunktion (oder abgeleiteter Größen) auf dem zukünftigen Zeitintervall aus Optionspreisen führt auf ein inverses Problem des Option Pricings, welches in ein äußeres nichtlineares und ein inneres lineares Problem zerlegt werden kann. Das innere Problem (die Identifikation einer Ableitung) ist ein Standardbeispielfür ein inkorrektes inverses Problem, d.h. die Lösung dieses Problems hängt nicht stetig von den Daten ab. Anhand von analytischen Untersuchungen von Nemytskii-Operatoren und deren Inversen wird in der Arbeit gezeigt, dass das äußere Problem gut gestellt aber in einigen Fällen schlecht konditioniert ist. Weiterhin wird ein Algorithmus für die schnelle Lösung des äußeren Problems unter Einbeziehung der Monotonieinformationen vorgeschlagen. Alle in der Arbeit diskutierten Verfahren werden anhand von numerischen Fallstudien illustriert.
32

Stochastické diferenciální rovnice s Gaussovským šumem / Stochastic Differential Equations with Gaussian Noise

Janák, Josef January 2018 (has links)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
33

Some Extensions of Fractional Ornstein-Uhlenbeck Model : Arbitrage and Other Applications

Morlanes, José Igor January 2017 (has links)
This doctoral thesis endeavors to extend probability and statistical models using stochastic differential equations. The described models capture essential features from data that are not explained by classical diffusion models driven by Brownian motion. New results obtained by the author are presented in five articles. These are divided into two parts. The first part involves three articles on statistical inference and simulation of a family of processes related to fractional Brownian motion and Ornstein-Uhlenbeck process, the so-called fractional Ornstein-Uhlenbeck process of the second kind (fOU2). In two of the articles, we show how to simulate fOU2 by means of circulant embedding method and memoryless transformations. In the other one, we construct a least squares consistent estimator of the drift parameter and prove the central limit theorem using techniques from Stochastic Calculus for Gaussian processes and Malliavin Calculus. The second phase of my research consists of two articles about jump market models and arbitrage portfolio strategies for an insider trader. One of the articles describes two arbitrage free markets according to their risk neutral valuation formula and an arbitrage strategy by switching the markets. The key aspect is the difference in volatility between the markets. Statistical evidence of this situation is shown from a sequential data set. In the other one, we analyze the arbitrage strategies of an strong insider in a pure jump Markov chain financial market by means of a likelihood process. This is constructed in an enlarged filtration using Itô calculus and general theory of stochastic processes. / Föreliggande doktorsavhandling strävar efter att utöka sannolikhetsbaserade och statistiska modeller med stokastiska differentialekvationer. De beskrivna modellerna fångar väsentliga egenskaper i data som inte förklaras av klassiska diffusionsmodeller för brownsk rörelse.  Nya resultat, som författaren har härlett, presenteras i fem uppsatser. De är ordnade i två delar. Del 1 innehåller tre uppsatser om statistisk inferens och simulering av en familj av stokastiska processer som är relaterade till fraktionell brownsk rörelse och Ornstein-Uhlenbeckprocessen, så kallade andra ordningens fraktionella Ornstein-Uhlenbeckprocesser (fOU2). I två av uppsatserna visar vi hur vi kan simulera fOU2-processer med hjälp av cyklisk inbäddning och minneslös transformering. I den tredje uppsatsen konstruerar vi en minsta-kvadratestimator som ger konsistent skattning av driftparametern och bevisar centrala gränsvärdessatsen med tekniker från statistisk analys för gaussiska processer och malliavinsk analys.  Del 2 av min forskning består av två uppsatser om marknadsmodeller med plötsliga hopp och portföljstrategier med arbitrage för en insiderhandlare. En av uppsatserna beskriver två arbitragefria marknader med riskneutrala värderingsformeln och en arbitragestrategi som består i växla mellan marknaderna. Den väsentliga komponenten är skillnaden mellan marknadernas volatilitet. Statistisk evidens i den här situationen visas utifrån ett sekventiellt datamaterial. I den andra uppsatsen analyserar vi arbitragestrategier hos en insiderhandlare i en finansiell marknad som förändrar sig enligt en Markovkedja där alla förändringar i tillstånd består av plötsliga hopp. Det gör vi med en likelihoodprocess. Vi konstruerar detta med utökad filtrering med hjälp av Itôanalys och allmän teori för stokastiska processer. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.</p>
34

Identification in Financial Models with Time-Dependent Volatility and Stochastic Drift Components

Krämer, Romy 31 May 2007 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Parameteridentifikation in finanzmathematischen Modellen, welche sich durch eine zeitabhängige Volatilitätsfunktion und stochastische Driftkomponente auszeichnen. Als Referenzmodell wird eine Variante des Bivariaten Ornstein-Uhlenbeck-Modells betrachtet. Ziel ist es, die zeitabhängige Volatilitätsfunktion sowohl in der Vergangenheit als auch für ein kleines zukünftiges Zeitintervall zu identifizieren. Weiterhin sollen einige reellwertige Parameter, welche die stochastische Drift beschreiben, bestimmt werden. Dabei steht nicht die Anpassung des betrachteten Modells an reale Aktienpreisdaten im Vordergrund sondern eine mathematische Untersuchung der Chancen und Risiken der betrachteten Schätzverfahren. Als Daten können Aktienpreise und Optionspreise beobachtet werden. Aus hochfrequenten Aktienpreisdaten wird mittels Wavelet-Projektion die (quadrierte) Volatilitätsfunktion auf einem vergangenen Zeitintervall geschätzt. Mit der so bestimmten Volatilitätsfunktion und einigen Aktienpreisen können anschließend die reellwertigen Parameter mit Hilfe der Maximum-Likelihood-Methode bestimmt werden, wobei die Likelihoodfunktion mit Hilfe des Kalman Filters berechnet werden kann. Die Identifikation der Volatilitätsfunktion (oder abgeleiteter Größen) auf dem zukünftigen Zeitintervall aus Optionspreisen führt auf ein inverses Problem des Option Pricings, welches in ein äußeres nichtlineares und ein inneres lineares Problem zerlegt werden kann. Das innere Problem (die Identifikation einer Ableitung) ist ein Standardbeispielfür ein inkorrektes inverses Problem, d.h. die Lösung dieses Problems hängt nicht stetig von den Daten ab. Anhand von analytischen Untersuchungen von Nemytskii-Operatoren und deren Inversen wird in der Arbeit gezeigt, dass das äußere Problem gut gestellt aber in einigen Fällen schlecht konditioniert ist. Weiterhin wird ein Algorithmus für die schnelle Lösung des äußeren Problems unter Einbeziehung der Monotonieinformationen vorgeschlagen. Alle in der Arbeit diskutierten Verfahren werden anhand von numerischen Fallstudien illustriert.
35

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

Krämer, Romy, Richter, Matthias 19 May 2008 (has links)
In this paper, we study mathematical properties of a generalized bivariate Ornstein-Uhlenbeck model for financial assets. Originally introduced by Lo and Wang, this model possesses a stochastic drift term which influences the statistical properties of the asset in the real (observable) world. Furthermore, we generali- ze the model with respect to a time-dependent (but still non-random) volatility function. Although it is well-known, that drift terms - under weak regularity conditions - do not affect the behaviour of the asset in the risk-neutral world and consequently the Black-Scholes option pricing formula holds true, it makes sense to point out that these regularity conditions are fulfilled in the present model and that option pricing can be treated in analogy to the Black-Scholes case.
36

Odhad parametru ve stochastických diferenciálních rovnicích / Parameter Estimation in Stochastic Differential Equations

Pacák, Daniel January 2020 (has links)
In the Thesis the problem of estimating an unknown parameter in a stochastic dif- ferential equation is studied. Linear equations with Volterra process as the source of noise are considered. Firstly, the properties of Volterra processes and the properties of stochastic integral with respect to a Volterra process are presented. Secondly, the prop- erties of the solution to the equation under consideration are discussed. This includes the existence of the strictly stationary solution, the properties of such solution and ergodic results. These results are then generalized to equations with a mixed noise. Ergodic results are used to derive strongly consistent estimators of the unknown parameter. 1
37

Understanding Amphibian Vulnerability to Extinction: A Phylogenetic and Spatial Approach

Corey, Sarah J. 08 September 2009 (has links)
No description available.
38

Regression Modeling of Time to Event Data Using the Ornstein-Uhlenbeck Process

Erich, Roger Alan 16 August 2012 (has links)
No description available.
39

Stochastic Fluctuations in Endoreversible Systems

Schwalbe, Karsten 20 February 2017 (has links) (PDF)
In dieser Arbeit wird erstmalig der Einfluss stochastischer Schwankungen auf endoreversible Modelle untersucht. Hierfür wird die Novikov-Maschine mit drei verschieden Wärmetransportgesetzen (Newton, Fourier, asymmetrisch) betrachtet. Während die maximale verrichtete Arbeit und der dazugehörige Wirkungsgrad recht einfach im Falle konstanter Wärmebadtemperaturen hergeleitet werden können, ändern sich dies, falls die Temperaturen stochastisch fluktuieren können. Im letzteren Fall muss die stochastische optimale Kontrolltheorie genutzt werden, um das Maximum der zu erwartenden Arbeit und die dazugehörige Kontrollstrategie zu ermitteln. Im Allgemeinen kann die Lösung derartiger Probleme auf eine nichtlineare, partielle Differentialgleichung, welche an eine Optimierung gekoppelt ist, zurückgeführt werden. Diese Gleichung wird stochastische Hamilton-Jacobi-Bellman-Gleichung genannt. Allerdings können, wie in dieser Arbeit dargestellt, die Berechnungen vereinfacht werden, wenn man annimmt, dass die Fluktuationen unabhängig von der betrachteten Kontrollvariablen sind. In diesem Fall zeigen analytische Betrachtungen, dass die Gleichungen für die verrichtete Arbeit and den Wirkungsgrad ihre ursprüngliche Form behalten, aber manche Terme müssen durch entsprechende Zeitmittel bzw. Erwartungswerte ersetzt werden, jeweils abhängig von der betrachteten Art der Kontrolle. Basierend auf einer Analyse der Leistungsparameter im Falle einer Gleichverteilung der heißen Temperatur der Novikov-Maschine können Schlussfolgerungen auf deren Monotonieverhalten gezogen werden. Der Vergleich verschiedener, zeitunabhängiger, symmetrischer Verteilungen führt zu einer bis dato unbekannten Erweiterung des Curzon-Ahlborn-Wirkungsgrades im Falle kleiner Schwankungen. Weiterhin wird eine Analyse einer Novikov-Maschine mit asymmetrischen Wärmetransport, bei der das Verhalten der heißen Temperatur durch einen Ornstein-Uhlenbeck-Prozess beschrieben wird, durchgeführt. Abschließend wird eine Novikov-Maschine mit Fourierscher Wärmeleitung, bei der die Dynamik der heißen Temperatur von der Kontrollvariable abhängt, betrachtet. Durch das Lösen der Hamilton-Jacobi-Bellman-Gleichung können neuartige Schlussfolgerungen gezogen werden, wie derartige Systeme optimal zu steuern sind. / In this thesis, the influence of stochastic fluctuations on the performance of endoreversible engines is investigated for the first time. For this, a Novikov-engine with three different heat transport laws (Newtonian, Fourier, asymmetric) is considered. While the maximum work output and corresponding efficiency can be deduced easily in the case of constant heat bath temperatures, this changes, if these temperatures are allowed to fluctuate stochastically. In the latter case, stochastic optimal control theory has to be used to find the maximum of the expected work output and the corresponding control policy. In general, solving such problems leads to a non-linear, partial differential equation coupled to an optimization, called the stochastic Hamilton-Jacobi-Bellman equation. However, as presented in this thesis, calculations can be simplified, if one assumes that the fluctuations are independent of the considered control variable. In this case, analytic considerations show that the equations for performance measures like work output and efficiency keep their original form, but terms have to be replaced by appropriate time averages and expectation values, depending on the considered control type. Based on an analysis of the performance measures in the case of a uniform distribution of the hot temperature of the Novikov engine, conclusions on their monotonicity behavior are drawn. The comparison of several, time independent, symmetric distributions reveals a to date unknown extension to the Curzon-Ahlborn efficiency in the case of small fluctuations. Furthermore, an analysis of a Novikov engine with asymmetric heat transport, where the behavior of the hot temperature is described by an Ornstein-Uhlenbeck process, is performed. Finally, a Novikov engine with Fourier heat transport is considered, where the dynamics of the hot temperature depends on the control variable. By solving the corresponding Hamilton-Jacobi-Bellman equation, new conclusions how to optimally control such systems are drawn.
40

Processus d'Ornstein-Uhlenbeck et son supremum : quelques résultats théoriques et application au risque climatique / Ornstein-Uhlenbeck process and its supremum : theorical results and application to the climatic risk

Gay, Laura 23 September 2019 (has links)
Prévoir et estimer le risque de canicule est un enjeu politique majeur. Évaluer la probabilité d'apparition des canicules et leurs sévérités serait possible en connaissant la température en temps continu. Cependant, les extrêmes journaliers (maxima et minima) sont parfois les seules données disponibles. Pour modéliser la dynamique des températures, il est courant d'utiliser un processus d'Ornstein-Uhlenbeck. Une estimation des paramètres de ce processus n'utilisant que les suprema journaliers observés est proposée. Cette nouvelle approche se base sur une minimisation des moindres carrés faisant intervenir la fonction de répartition du supremum. Les mesures de risque liées aux canicules sont ensuite obtenues numériquement. Pour exprimer explicitement ces mesures de risque, il peut être utile d'avoir la loi jointe du processus d'Ornstein-Uhlenbeck et de son supremum. L'étude se limite tout d'abord à la fonction de répartition / densité jointe du point final du processus et de son supremum. Cette probabilité admet une densité, solution de l'équation de Fokker-Planck, obtenue explicitement et utilisant les fonctions spéciales paraboliques cylindriques. La preuve de l'expression de la densité repose sur une décomposition sur une base hilbertienne de l'espace via une méthode spectrale. On étudie également le processus d'Ornstein-Uhlenbeck oscillant, dont le paramètre de drift est constant par morceaux selon le signe du processus. La transformée de Laplace du temps d'atteinte de ce processus est déterminée et la probabilité que le processus soit positif en un temps donné est calculée. / Forecasting and assessing the risk of heat waves is a crucial public policy stake. Evaluate the probability of heat waves and their severity can be possible by knowing the temperature in continuous time. However, daily extremes (maxima and minima) might be the only available data. The Ornstein-Uhlenbeck process is commonly used to model temperature dynamic. An estimation of the process parameters using only daily observed suprema of temperatures is proposed here. This new approach is based on a least square minimization using the cumulative distribution function of the supremum. Risk measures related to heat waves are then obtained numerically. In order to calculate explicitly those risk measures, it can be useful to have the joint law of the Ornstein-Uhlenbeck process and its supremum. The study is _rst limited to the joint density / distribution of the endpoint and supremum of the Ornstein-Uhlenbeck process. This probability admits a density, solution of the Fokker-Planck equation and explicitly obtained as an expansion involving parabolic cylinder functions. The proof of the density expression relies on a decomposition on a Hilbert basis of the space via a spectral method. We also study the oscillating Ornstein-Uhlenbeck process, which drift parameter is piecewise constant depending on the sign of the process. The Laplace transform of this process hitting time is determined and we also calculate the probability for the process to be positive on a fixed time.

Page generated in 0.0392 seconds