• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 61
  • 51
  • 40
  • 37
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 528
  • 85
  • 81
  • 80
  • 67
  • 63
  • 62
  • 60
  • 59
  • 54
  • 48
  • 46
  • 46
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of a Variable Output Power, High Efficiency Programmable Telemetry Transmitter Using GaN Amplifier Technology

Oder, Stephen, Arinello, Paula, Caron, Peter, Crawford, Scott, McGoldrick, Stephen, Bajgot, Douglas 10 1900 (has links)
Cobham Electronic Systems, Inc. has developed a field-programmable telemetry transmitter module for higher-power (0.1W to 25W) airborne telemetry applications. A key feature of the transmitter is high DC to RF conversion efficiency over the entire variable output power range of 25dB through the use of GaN amplifiers. This high efficiency is realized by using a variable voltage DC-DC converter and dynamic bias control of the GaN amplifier elements. This feature is useful in that output power can be tailored to mission requirements and timelines, thereby extending battery life and increasing operation time. The transmitter receives configuration commands and can be programmed through an external data port. The transmitter can be configured for RF power and frequency over the telemetry S-Band frequency range, and has multiple data rates. The unit consists of RF, digital and power supply circuits. The RF transmitter is a PCM-FM type with a phase-locked loop, driver amplifiers, a power amplifier and a digital processor for RF control. The unit contains a digital processor, FPGA's, and flash memory. The power supplies contains all the regulator circuits to supply power to the rest of the unit, variable output drain voltage to the GaN devices, EMI filtering, under/overvoltage protection, a temperature sensor and a digital processor for power control. The electronics are housed in a compact aluminum housing.
82

外力を受ける非線形振動子のエネルギー収集特性 / Energy Harvesting Characteristics of Nonlinear Oscillators under Excitation

窪田, まど華 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18991号 / 工博第4033号 / 新制||工||1621 / 31942 / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 引原 隆士, 教授 土居 伸二, 教授 小林 哲生 / 学位規則第4条第1項該当
83

Globaliai susietųjų osciliatorių ansamblio sunchronizacijos valdymas / Control of Synchrony in Globally Coupled Oscillators ensemble

Nekrasovaitė, Asta 16 August 2007 (has links)
Gyvosios sistemos tikriausia labiausiai žadina žmogaus smalsumą ir suteikia įkvėpimo bendrųjų dėsnių ieškojimams. Daugelio jų sudėtinga tvarka ir dinamika vis dar yra neįmintos mįslės ir neišspręsti uždaviniai. Vienas tokių uždavinių yra sinchronizacijos atsiradimas, įtaka ir valdymas neuronų populiacijose. Nors neuronas – sudėtinga biologinė sistema ir matematiniai jo modeliai yra pakankamai komplikuoti, sinchronizacija silpnai įtakoja atskiro neorono ypatybes, bet atspindi visos populiacijos dinamiką. Pasinaudodami šia palankia aplinkybe, galime aproksimuoti neuronų populiaciją labai paprastų globaliai susietųjų (sąveikauja kiekvienas elementas su kiekvienu) osciliatorių ansambliu ir gauti gerą matematinio populiacijos dinamikos modelio sutapimą su realia sistema. Darni neuronų veikla žmogaus organizmui yra gyvybiškai svarbus procesas, kurio sutrikimai dažniausiai turi stiprias neigiamas pasekmes. Empiriškai buvo pastebėta, kad atsiradus Parkinsono ligos simptomams, dalis neuronų sinchronizuojasi. Kai ši sinchronizacija sustabdoma, ligos simptomai žymiai susilpnėja arba visai išnyksta. Medicinoje jau naudojamas aukšto dažnio giluminės smegenų stimuliacijos metodas gydyti šiai ligai yra veiksmingas, bet šis mechanizmas nėra gerai suprantamas ir turi nemažai neigiamų savybių: · metodas yra invazinis, · nėra grįžtamojo ryšio, · žmogaus smegenys yra adaptyvios ir ilgainiui pripranta prie pastovios stimuliacijos, o tai iššaukia stimuliacijos didinimą, · galimos komplikacijos... [toliau žr. visą tekstą] / The phenomenon of the synchronization was observed and studied since XVII century and until today has been the main subject of many researches and core trigger of many devices as well as nature appearences. Though sometimes synchronization is not a desirable process and it is important to learn how to command over it in order to suppress or to strengthen synchronous behaviour in accordance with the results one would like to obtain. This study focuses on controlling the process of synchronization in globally coupled ensemble of oscillators with a configuration of separated observed and stimulated subsystems. The development of such technique could be usefull for suppression of the undesired synchronization of neural networks in the cases like Parkinsonian desease and dystonia. The main advantage of this method is being noninvasive feedback control.
84

Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

Pankratz, Erik 2011 December 1900 (has links)
Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort.
85

Photonic Generation of Microwave and Millimeter Wave Signals

Li, Wangzhe 19 April 2013 (has links)
Photonic generation of ultra-low phase noise and frequency-tunable microwave or millimeter-wave (mm-wave) signals has been a topic of interest in the last few years. Advanced photonic techniques, especially the recent advancement in photonic components, have enabled the generation of microwave and mm-wave signals at high frequencies with a large tunable range and ultra-low phase noise. In this thesis, techniques to generate microwave and mm-wave signals in the optical domain are investigated, with an emphasis on system architectures to achieve large frequency tunability and low phase noise. The thesis consists of two parts. In the first part, techniques to generate microwave and mm-wave signals based on microwave frequency multiplication are investigated. Microwave frequency multiplication can be realized in the optical domain based on external modulation using a Mach-Zehnder modulator (MZM), but with limited multiplication factor. Microwave frequency multiplication based on external modulation using two cascaded MZMs to provide a larger multiplication factor has been proposed, but no generalized approach has been developed. In this thesis, a generalized approach to achieving microwave frequency multiplication using two cascaded MZMs is presented. A theoretical analysis leading to the operating conditions to achieve frequency quadrupling, sextupling or octupling is developed. The system performance in terms of phase noise, tunability and stability is investigated. To achieve microwave generation with a frequency multiplication factor (FMF) of 12, a technique based on a joint operation of polarization modulation, four-wave mixing and stimulated-Brillouin-scattering-assisted filtering is also proposed. The generation of a frequency-tunable mm-wave signal from 48 to 132 GHz is demonstrated. The proposed architecture can even potentially boost the FMF up to 24. In the second part, techniques to generate ultra-low phase noise and frequency-tunable microwave and mm-wave signals based on an optoelectronic oscillator (OEO) are studied. The key component in an OEO to achieve low phase noise and large frequency-tunable operation is the microwave bandpass filter. In the thesis, we first develop a microwave photonic filter with an ultra-narrow passband and large tunability based on a phase-shifted fiber Bragg grating (PS-FBG). Then, an OEO incorporating such a microwave photonic filter is developed. The performance including the tunable range and phase noise is evaluated. To further increase the frequency tunable range, a technique to achieve microwave frequency multiplication in an OEO is proposed. An mm-wave signal with a tunable range more than 40 GHz is demonstrated.
86

Multipath Miller Compensation for Switched-Capacitor Systems

Li, Zhao 10 August 2011 (has links)
A hybrid operational amplifier compensation technique using Miller and multipath compensation is presented for multi-stage amplifier designs. Unconditional stability is achieved by the means of pole-zero cancellation where left-half zeros cancel out the non-dominant poles of the operational amplifier. The compensation technique is stable over process, temperature, and voltage variations. Compared to conventional Miller-compensation, the proposed compensation technique exhibits improved settling response for operational amplifiers with the same gain, bandwidth, power, and area. For the same settling time, the proposed compensation technique will require less area and consume less power than conventional Miller-compensation. Furthermore, the proposed technique exhibits improved output slew rate and lower noise over the conventional Miller-compensation technique. Two-stage operational amplifiers were designed in a 0.18µm CMOS process using the proposed technique and conventional Miller-compensated technique. The design procedure for the two-stage amplifier is applicable for higher-order amplifier designs. The amplifiers were incorporated into a switched-capacitor oscillator where the oscillation harmonics are dependent on the settling behaviour of the op amps. The superior settling response of the proposed compensation technique results in a improved output waveform from the oscillator.
87

A mechanistic model of motion processing in the early visual system

Hurzook, Aziz 23 November 2012 (has links)
A prerequisite for the perception of motion in primates is the transformation of varying intensities of light on the retina into an estimation of position, direction and speed of coherent objects. The neuro-computational mechanisms relevant for object feature encoding have been thoroughly explored, with many neurally plausible models able to represent static visual scenes. However, motion estimation requires the comparison of successive scenes through time. Precisely how the necessary neural dynamics arise and how other related neural system components interoperate have yet to be shown in a large-scale, biologically realistic simulation. The proposed model simulates a spiking neural network computation for representing object velocities in cortical areas V1 and middle temporal area (MT). The essential neural dynamics, hypothesized to reside in networks of V1 simple cells, are implemented through recurrent population connections that generate oscillating spatiotemporal tunings. These oscillators produce a resonance response when stimuli move in an appropriate manner in their receptive fields. The simulation shows close agreement between the predicted and actual impulse responses from V1 simple cells using an ideal stimulus. By integrating the activities of like V1 simple cells over space, a local measure of visual pattern velocity can be produced. This measure is also the linear weight of an associated velocity in a retinotopic map of optical flow. As a demonstration, the classic motion stimuli of drifting sinusoidal gratings and variably coherent dots are used as test stimuli and optical flow maps are generated. Vector field representations of this structure may serve as inputs for perception and decision making processes in later brain areas.
88

Load Carrying Assistance Device: Pogo Suit

January 2014 (has links)
abstract: Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. Adding energy while not being in sync with the user can dramatically hurt performance making it necessary to have correct timing with the user. Many human tasks such as walking, running, and hopping are repeating or cyclic tasks and a robot can add energy in sync with the repeating pattern for assistance. A method has been developed to add energy at the appropriate time to the repeating limit cycle based on a phase oscillator. The phase oscillator eliminates time from the forcing function which is based purely on the motion of the user. This approach has been simulated, implemented and tested in a robotic backpack which facilitates carrying heavy loads. The device oscillates the load of the backpack, based on the motion of the user, in order to add energy at the correct time and thus reduce the amount of energy required for walking with a heavy load. Models were developed in Working Model 2-D, a dynamics simulation software, in conjunction with MATLAB to verify theory and test control methods. The control system developed is robust and has successfully operated on a range of different users, each with their own different and distinct gait. The results of experimental testing validated the corresponding models. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2014
89

Coarse-Fine VCO Design with a New Supply Noise Suppression Method

January 2018 (has links)
abstract: VCO as a ubiquitous circuit in many systems is highly demanding for the phase noises. Lowering the noise migrated from the power supply has been the trending topics for many years. Considering the Ring Oscillator(RO) based VCO is more sensitive to the supply noise, it is more significant to find out a useful technique to reduce the supply noise. Among the conventional supply noise reduction techniques such as filtering, channel length adjusting for the transistors, and the current noise mutual canceling, the new feature of the 28nm UTBB-FD-SOI process launched by the ST semiconductor offered a new method to reduce the noise, which is realized by allowing the circuit designer to dynamically control the threshold voltage. In this thesis, a new structure of the linear coarse-fine VCO with 1V supply voltage is designed for the ring typed VCO. The structure is also designed to be flexible to tune the frequency coverage by the fine and coarse tunable on-board resistors. The thesis has given the model of the phase noise reduction method. The model has also been proved to be meaningful with the newly designed VCO circuit. For instances, given 1μV/√Hz white noise coupled on the supply, the 3GHz VCO can have a more than 7dBc/Hz phase noise lowering at the 10MHz frequency offset. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
90

Configuration–Interaction Wave Functions and Transition Probabilities for N II

Samnodi, Khulud 15 December 2017 (has links)
The energy levels, lifetimes, oscillator strengths, and transition probabilities of N II lines have been reported in this thesis. We have used the Hartree-Fock (HF) and Multiconfiguration Hartree-Fock (MCHF) methods in our calculations. The relativistic operators mass correction, one-body Darwin term, spin-orbit interaction, and spin-other-orbit have been included in the Breit-Pauli Hamiltonian in our calculations of atomic parameters of singly-ionized nitrogen. We considered 70 levels of the 2s2 2p2, 2s2 2p3, 2s2 2p 3p, 2s2 2p 3s, 2s2 2p 4p, 2s2 2p 3d, 2s2 2p 4s, and 2s2 2p 4d configurations of N II. Our results have been compared with other available calculations and measurements, and generally a good agreement is found.

Page generated in 0.0477 seconds