• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 16
  • 14
  • 14
  • 12
  • 5
  • 1
  • 1
  • Tagged with
  • 159
  • 28
  • 25
  • 20
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Modellierung des Materialverhaltens Magnetorheologischer Fluide unter Verwendung der Fourier-Transformations Rheologie

Boisly, Martin 30 November 2018 (has links)
In dieser Dissertation wird das viskoplastische Schubverhalten eines magnetorheologischen Fluids (MRF) modelliert. Mithilfe eines phänomenologischen Modellierungsansatzes auf Basis nichtlinearer rheologischer Elemente können die gemessenen Fließkurven sowie Speicher- und Verlustmoduli abgebildet werden. Ein MRF ist ein Material mit fest-flüssig Übergang. Es besitzt von einem Magnetfeld abhängige Materialeigenschaften. Um diese beschreiben zu können, wird zunächst eine phänomenologische Stoffklassifizierung eingeführt. Auf deren Grundlage teilen sich Stoffe allgemein in Flüssigkeiten, Festkörper und Materialien mit fest-flüssig Übergang auf. Zur Beschreibung des Materialverhaltens von MRF werden drei viskoplastische Modelle formuliert und gegenübergestellt. Zur Identifikation der Materialparameter wird eine Identifikationsstrategie auf der Grundlage charakteristischer Punkte entwickelt. Charakteristische Punkte sind exklusive Punkte von Materialfunktionen, die analytisch beschrieben und ohne Weiteres experimentell ermittelt werden können. Analytische Ausdrücke für charakteristische Punkte der Speicher- und Verlustmoduli werden über das Analogieprinzip unter Verwendung von Lissajous Diagrammen abgeleitet. Infolgedessen können die Materialparameter durch das Auswerten algebraischer Zusammenhänge identifiziert werden, ohne nichtlineare Optimierungsverfahren anwenden zu müssen. Hierbei stellt die Fließspannung einen signifikanten Materialparameter dar. Deswegen werden die Standardverfahren zur Bestimmung der Fließspannung auf rheologische Modelle angewendet und bewertet.
142

Fluctuation response patterns of network dynamics - An introduction

Zhang, Xiaozhu, Timme, Marc 01 March 2024 (has links)
Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction topologies, constitute models of broad classes of complex systems, ranging from gene regulatory and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems are driven by irregular and distributed fluctuating input signals from the environment. Yet how networked dynamical systems collectively respond to such fluctuations depends on the location and type of driving signal, the interaction topology and several other factors and remains largely unknown to date. As a key example, modern electric power grids are undergoing a rapid and systematic transformation towards more sustainable systems, signified by high penetrations of renewable energy sources. These in turn introduce significant fluctuations in power input and thereby pose immediate challenges to the stable operation of power grid systems. How power grid systems dynamically respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reliable operation of power grids yet not well understood. In this work, we systematically introduce a linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations presented not only provide approximate analytical descriptions of the dynamical responses of networks, but more importantly, also allow to extract key qualitative features about spatio-temporally distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed networked dynamical systems, explicate how dynamic network response patterns arise from the solution of the linearised response dynamics, and emphasise the role of LRT in predicting and comprehending power grid responses on different temporal and spatial scales and to various types of disturbances. Understanding such patterns from a general, mathematical perspective enables to estimate network responses quickly and intuitively, and to develop guiding principles for, e.g., power grid operation, control and design.
143

Lattice Point Counting through Fractal Geometry and Stationary Phase for Surfaces with Vanishing Curvature

Campolongo, Elizabeth Grace 02 September 2022 (has links)
No description available.
144

Localizing Structural and Functional Damage in the Neural Retina of Adolescents with Type 1 Diabetes

Tan, Wylie 27 November 2012 (has links)
Studies demonstrate neuro-retinal damage in patients with diabetes and no clinically visible diabetic retinopathy. It is unknown which retinal regions are most vulnerable to diabetes. We hypothesized that the standard and slow-flash (sf-) multifocal electroretinogram (mfERG) and adaptive optics (AO) imaging will localize retinal regions of vulnerability. Fifty-five adolescents with diabetes and 54 controls underwent mfERG testing to isolate predominately retinal bipolar cell activity and sf-mfERG testing to isolate three oscillatory potentials (OPs) from intraretinal amacrine and interplexiform cells. Greatest mfERG delays were in the superior temporal quadrant and at 5°-10° eccentricity. Greatest sf-mfERG delays were found at different eccentricities for each OP. Twenty adolescents with diabetes and 14 controls underwent AO imaging. No significant differences in cone photoreceptor density were found; however, patients showed a trend towards reduced density in the superior nasal region. Inner retinal structures may be more susceptible to damage by diabetes than outer retinal structures.
145

Localizing Structural and Functional Damage in the Neural Retina of Adolescents with Type 1 Diabetes

Tan, Wylie 27 November 2012 (has links)
Studies demonstrate neuro-retinal damage in patients with diabetes and no clinically visible diabetic retinopathy. It is unknown which retinal regions are most vulnerable to diabetes. We hypothesized that the standard and slow-flash (sf-) multifocal electroretinogram (mfERG) and adaptive optics (AO) imaging will localize retinal regions of vulnerability. Fifty-five adolescents with diabetes and 54 controls underwent mfERG testing to isolate predominately retinal bipolar cell activity and sf-mfERG testing to isolate three oscillatory potentials (OPs) from intraretinal amacrine and interplexiform cells. Greatest mfERG delays were in the superior temporal quadrant and at 5°-10° eccentricity. Greatest sf-mfERG delays were found at different eccentricities for each OP. Twenty adolescents with diabetes and 14 controls underwent AO imaging. No significant differences in cone photoreceptor density were found; however, patients showed a trend towards reduced density in the superior nasal region. Inner retinal structures may be more susceptible to damage by diabetes than outer retinal structures.
146

Power quality analysis using relay recorded data

Birdi, Harjit Singh 01 September 2006
Demand for electrical power is increasing everyday. Along with the increase in power demand, the characteristics of the loads are also changing. From being high power consuming, simple, robust loads, today loads are more efficient, but at the same time more sensitive. The performance and life of these highly sensitive loads depend a lot on the quality of power supplied to them. <p>Power quality is any deviation of the voltage or current waveform from its normal sinusoidal waveshape. These disturbances include, but are not limited to, sag, undervoltage, interruption, swell, overvoltage, transients, harmonics, voltage flicker and any other distortions to the sinusoidal waveform. Occurrence of one or more of such disturbances is called a power quality event. Automatic classification of these disturbances is important for quick determination of the causes and to characterize possible impacts of the disturbances.<p>Modern microprocessor based protective relays have numerous integrated functions that allow them to provide information on power quality events. It is proposed to utilize the existing numerical relays to analyze the quality of power at any point in the power system. The numerical relays can be programmed to capture the oscillographic waveform or any disturbance on the analogue signal or change of state of the digital signals and store it in the form of Common Format For Transient Data Exchange (COMTRADE) format. These records are then transferred to a central monitoring workstation for off-line analysis. <p>This thesis describes a technique to automate the classification and analysis of the power quality events using relay recorded data. The technique uses voltage duration and magnitude (as specified in the IEEE Std. 1159 - 1995, IEEE Recommended Practice for Monitoring Electric Power Quality) of three phases to detect and classify the events. The classified results are then presented in a user-friendly graphical form. Fast Fourier Transform (FFT) is used to estimate the fundamental frequency and harmonic components in power systems. The graphical user interface of the power quality analysis tool is developed using Microsoft Visual C++ IDE and the algorithms are programmed in C++. <p>The proposed technique was tested using data obtained by simulating different power system disturbances as well as on the data recorded by relays. The algorithms were able to classify the power quality events accurately. In the future, this facility will: enhance the real time monitoring of power quality and provide statistical analysis of available power quality data. From the utility viewpoint, it would allow them to monitor power quality in a cost effective manner and assist in preventive and predictive maintenance besides helping them to fix differential tariff based on the quality of the delivered power. It may also turn out to be a smart tool for them to penalize the consumer polluting the power quality.
147

Power quality analysis using relay recorded data

Birdi, Harjit Singh 01 September 2006 (has links)
Demand for electrical power is increasing everyday. Along with the increase in power demand, the characteristics of the loads are also changing. From being high power consuming, simple, robust loads, today loads are more efficient, but at the same time more sensitive. The performance and life of these highly sensitive loads depend a lot on the quality of power supplied to them. <p>Power quality is any deviation of the voltage or current waveform from its normal sinusoidal waveshape. These disturbances include, but are not limited to, sag, undervoltage, interruption, swell, overvoltage, transients, harmonics, voltage flicker and any other distortions to the sinusoidal waveform. Occurrence of one or more of such disturbances is called a power quality event. Automatic classification of these disturbances is important for quick determination of the causes and to characterize possible impacts of the disturbances.<p>Modern microprocessor based protective relays have numerous integrated functions that allow them to provide information on power quality events. It is proposed to utilize the existing numerical relays to analyze the quality of power at any point in the power system. The numerical relays can be programmed to capture the oscillographic waveform or any disturbance on the analogue signal or change of state of the digital signals and store it in the form of Common Format For Transient Data Exchange (COMTRADE) format. These records are then transferred to a central monitoring workstation for off-line analysis. <p>This thesis describes a technique to automate the classification and analysis of the power quality events using relay recorded data. The technique uses voltage duration and magnitude (as specified in the IEEE Std. 1159 - 1995, IEEE Recommended Practice for Monitoring Electric Power Quality) of three phases to detect and classify the events. The classified results are then presented in a user-friendly graphical form. Fast Fourier Transform (FFT) is used to estimate the fundamental frequency and harmonic components in power systems. The graphical user interface of the power quality analysis tool is developed using Microsoft Visual C++ IDE and the algorithms are programmed in C++. <p>The proposed technique was tested using data obtained by simulating different power system disturbances as well as on the data recorded by relays. The algorithms were able to classify the power quality events accurately. In the future, this facility will: enhance the real time monitoring of power quality and provide statistical analysis of available power quality data. From the utility viewpoint, it would allow them to monitor power quality in a cost effective manner and assist in preventive and predictive maintenance besides helping them to fix differential tariff based on the quality of the delivered power. It may also turn out to be a smart tool for them to penalize the consumer polluting the power quality.
148

Periodic flow physics in porous media of regenerative cryocoolers

Pathak, Mihir Gaurang 20 September 2013 (has links)
Pulse tube cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without moving parts at their low temperature ends, and are capable of reaching temperatures down to and below 123 K. PTCs are particularly suitable for applications in space, guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of gases. Applications of these cryocoolers span across many industries including defense, aerospace, biomedical, energy, and high tech. Among the challenges facing the PTC research community is the improvement of system efficiency, which is a direct function of the regenerator component performance. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. An important deficiency with respect to the state of art models dealing with PTCs is the limited understanding of the hydrodynamic and thermal transport parameters associated with periodic flow of a cryogenic fluid in micro-porous structures. In view of the above, the goals of this investigation include: 1) experimentally measuring and correlating the steady and periodic flow Darcy permeability and Forchheimer’s inertial hydrodynamic parameters for available rare-Earth ErPr regenerator filler; 2) employing a CFD-assisted methodology for the unambiguous quantification of the Darcy permeability and Forchheimer’s inertial hydrodynamic parameters, based on experimentally measured steady and periodic flow pressure drops in porous structures representing recently developed regenerator fillers; and 3) performing a direct numerical pore-level investigation for steady and periodic flows in a generic porous medium in order to elucidate the flow and transport processes, and quantify the solid-fluid hydrodynamic and heat transfer parameters. These hydrodynamic resistances parameters were found to be significantly different for steady and oscillatory flows.
149

Design of a Bioreactor to Mimic Hemodynamic Shear Stresses on Endothelial Cells in Microfluidic Systems

Lightstone, Noam S. 26 June 2014 (has links)
The mechanisms behind cardiovascular disease (CVD) initiation and progression are not fully elucidated. It is hypothesized that blood flow patterns regulate endothelial cell (EC) function to affect the progression of CVDs. A system that subjects ECs to physiologically-relevant shear stress waveforms within microfluidic devices has not yet been demonstrated, despite the advantages associated with the use of these devices. In this work, a bioreactor was designed to fulfill this need. Waveforms from regions commonly affected by CVDs including were derived. Pump motion and fluid flow profiles were validated by actuator motion tracking, particle image velocimetry, and flowmeters. While several relevant waveforms were successfully replicated, physiological waveforms could not be produced at physiological frequencies owing to actuator velocity and accuracy limitations, as well as dampening effects in the system. Overall, this work lays the foundation for designing a system that provides insight into the role of shear stress in CVD pathogenesis.
150

Design of a Bioreactor to Mimic Hemodynamic Shear Stresses on Endothelial Cells in Microfluidic Systems

Lightstone, Noam S. 26 June 2014 (has links)
The mechanisms behind cardiovascular disease (CVD) initiation and progression are not fully elucidated. It is hypothesized that blood flow patterns regulate endothelial cell (EC) function to affect the progression of CVDs. A system that subjects ECs to physiologically-relevant shear stress waveforms within microfluidic devices has not yet been demonstrated, despite the advantages associated with the use of these devices. In this work, a bioreactor was designed to fulfill this need. Waveforms from regions commonly affected by CVDs including were derived. Pump motion and fluid flow profiles were validated by actuator motion tracking, particle image velocimetry, and flowmeters. While several relevant waveforms were successfully replicated, physiological waveforms could not be produced at physiological frequencies owing to actuator velocity and accuracy limitations, as well as dampening effects in the system. Overall, this work lays the foundation for designing a system that provides insight into the role of shear stress in CVD pathogenesis.

Page generated in 0.0941 seconds