• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 77
  • 24
  • 24
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 277
  • 96
  • 80
  • 58
  • 53
  • 40
  • 34
  • 31
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

SKELETAL DEFICITS IN MALE AND FEMALE MOUSE MODELS OF DOWN SYNDROME

Jared Thomas (8766693) 14 May 2020 (has links)
<p>Down syndrome (DS) is a genetic disorder that results from triplication of human chromosome 21 (Hsa21) and occurs in around 1 in 1000 live births. All individuals with DS present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences between males and females with DS suggest a sexual dimorphism in how trisomy affects skeletal deficits associated with trisomy 21 (Ts21). Previous investigations of skeletal abnormalities in DS have varied methodology, sample sizes and ages making the underlying causes of deficits uncertain. Mouse models of DS were used to characterize skeletal abnormalities, but the genetic and developmental origin remain unidentified. Over-expression <i>Dyrk1a</i>, found on Hsa21 and mouse chromosome 16 (Mmu16) has been linked to cognitive deficits and skeletal deficiencies. Dp1Tyb mice contain three copies of all of the genes on Mmu16 that are homologous to Hsa21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb at 6 weeks 16 weeks showed distinctive abnormalities in BMD, trabecular architecture, and reduced bone strength over time that occur generally through an interaction between sex and genotype. Increased gene dosage and sexual dimorphism in Dp1Tyb mice revealed distinct phenotypes in bone formation and resorption. To assess how <i>Dyrk1a</i> influences the activity and function of osteoblasts Ts65Dn female trisomic mice, female mice with a floxed <i>Dyrk1a</i> gene (Ts65Dn, <i>Dyrk1a</i><sup>fl/+</sup>) were be bred to <i>Osx1</i>-GFP::Cre+ mice to generate Ts65Dn animals with a reduced copy of <i>Dyrk1a </i>in mature osteoblast cells. Female Ts65Dn,<i>Dyrk1a<sup>+/+/+</sup></i><sup> </sup>and Ts65Dn,<i>Dyrk1a<sup>+/+/-</sup></i>displayed significant defects in both trabecular architecture and cortical geometry. Ultimate force was reduced in trisomic animals, suggesting whole bone and tissue level properties are not adversely affected by trisomy. Reduction of <i>Dyrk1a</i> functional copy number in female mice did not improve skeletal deficits in an otherwise trisomic animal. <i>Dyrk1a </i>may not alter osteoblast cellular activity in an autonomous manner in trisomic female mice. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of the skeleton in DS mice, potentially paving the way for identification of the causal dosage-sensitive genes in both male and female animals. </p>
242

Vliv uhlíkových nanostruktur na chování lidských buněk a význam fetálního bovinního séra během buněčné adheze / The effect of carbon nanostructures on human cell behavior and the role of fetal bovine serum in cell adhesion

Verdánová, Martina January 2016 (has links)
Graphene (G) and nanocrystalline diamond (NCD) are carbon allotropes and promising nanomaterials with an excellent combination of their properties, such as high mechanical strength, electrical and thermal conductivity, possibility of functionalization and very high surface area to volume ratio. For these reasons, G and NCD are employed next to electronics in biomedical applications, including implant coating, drug and gene delivery and biosensing. For a fundamental characterization of cell behavior on G and NCD, we studied osteoblast adhesion and proliferation on differently treated G and NCD. Generally, both G and NCD exhibited better properties for osteoblast cultivation than control tissue culture polystyrene. Better cell adhesion but lower cell proliferation were observed on NCD compared to G. The most surprising finding was that hydrophobic G with nanowrinkled topography enhanced cell proliferation extensively, in comparison to hydrophilic and flat G and both NCDs (hydrophobic and hydrophilic) with slightly higher roughness. Promoted cell proliferation enables faster cell colonization of G and NCD substrates, meaning faster new tissue formation which is beneficial in biomedical applications. Furthermore, it was shown that osteoblast adhesion was promoted in the initial absence of fetal bovine...
243

Osteoporosis: An Age-Related and Gender-Specific Disease – A Mini-Review

Pietschmann, Peter, Rauner, Martina, Sipos, Wolfgang, Kerschan-Schindl, Katharina January 2009 (has links)
Osteoporosis, a classical age-related disease and known to be more common in women than in men, has been reported increasingly often in men during the past few years. Although men at all ages after puberty have larger bones than women, resulting in greater bending strength, mortality after a hip fracture, one of the major complications of osteoporosis, is more common in men than in women. Sex hormone deficiency is associated with unrestrained osteoclast activity and bone loss. Even though estrogen deficiency is more pronounced in women, it appears to be a major factor in the pathogenesis of osteoporosis in both genders. In contrast to osteoporosis in postmenopausal women, the treatment of osteoporosis in men has been scarcely reported. Nevertheless, some drugs commonly used for the treatment of osteoporosis in women also appear to be effective in men. The aim of this study is to review primary osteoporosis in the elderly with particular emphasis on gender-related aspects. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
244

Effects of Different Titanium Alloys and Nanosize Surface Patterning on Adhesion, Differentiation, and Orientation of Osteoblast-Like Cells

Monsees, Thomas K., Barth, Kathrin, Tippelt, Sonja, Heidel, K., Gorbunov, A., Pompe, W., Funk, Richard H. W. January 2005 (has links)
To test nanosize surface patterning for application as implant material, a suitable titanium composition has to be found first. Therefore we investigated the effect of surface chemistry on attachment and differentiation of osteoblast-like cells on pure titanium prepared by pulsed laser deposition (TiPLD) and different Ti alloys (Ti6Al4V, TiNb30 and TiNb13Zr13). Early attachment (30 min) and alkaline phosphatase (ALP) activity (day 5) was found to be fastest and highest, respectively, in cells grown on TiPLD and Ti6Al4V. Osteoblasts seeded on TiPLD produced most osteopontin (day 10), whereas expression of this extracellular matrix protein was an order of magnitude lower on the TiNb30 surface. In contrast, expression of the corresponding receptor, CD44, was not influenced by surface chemistry. Thus, TiPLD was used for further experiments to explore the influence of surface nanostructures on osteoblast adhesion, differentiation and orientation. By laser-induced oxidation, we produced patterns of parallel Ti oxide lines with different widths (0.2–10 μm) and distances (2–20 and 1,000 μm), but a common height of only 12 nm. These structures did not influence ALP activity (days 5–9), but had a positive effect on cell alignment. Two days after plating, the majority of the focal contacts were placed on the oxide lines. The portion of larger focal adhesions bridging two lines was inversely related to the line distance (2–20 μm). In contrast, the portion of aligned cells did not depend on the line distance. On average, 43% of the cells orientated parallel towards the lines, whereas 34% orientated vertically. In the control pattern (1,000 μm line distance), cell distribution was completely at random. Because a significant surplus of the cells preferred a parallel alignment, the nanosize difference in height between Ti surface and oxide lines may be sufficient to orientate the cells by contact guiding. However, gradients in electrostatic potential and surface charge density at the Ti/Ti oxide interface may additionally influence focal contact formation and cell guidance. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
245

Synergistic Effect of Titanium Alloy and Collagen Type I on Cell Adhesion, Proliferation and Differentiation of Osteoblast-Like Cells

Röhlecke, Cora, Witt, Martin, Kasper, Michael, Schulze, E., Wolf, C., Hofer, A., Funk, Richard H. W. January 2001 (has links)
A number of studies have demonstrated the pivotal role of collagen in modulating cell growth and differentiation. In bone, where the extracellular matrix is composed of approximately 85% type I collagen, cellular interaction with matrix components has been shown to be important in the regulation of the osteoblast phenotype. Preservation or enhancement of normal osteoblast function and appositional bone formation after implant placement represents a strategy that can be useful for the purpose of improving osseointegration. In order to further improve biocompatibility, we combined two known favorable compounds, namely the titanium alloy, Ti6A14V, with type I collagen. We assessed the in vitro behavior of primary osteoblasts grown on both fibrillar collagen-coated and tropocollagen-coated Ti6A14V in comparison with uncoated titanium alloy, using an improved adsorption procedure. As parameters of biocompatibility, a variety of processes, including cell attachment, spreading, cytoskeletal organization, focal contact formation, proliferation and expression of a differentiated phenotype, were investigated. Our results demonstrated for the first time that in comparison to uncoated titanium alloy, collagen-coated alloy enhanced spreading and resulted in a more rapid formation of focal adhesions and their associated stress fibers. Growing on collagen-coated Ti6A14V, osteoblasts had a higher proliferative capacity and the intracellular expression of osteopontin was upregulated compared to uncoated titanium alloy. Type I collagen-coated titanium alloy exhibits favorable effects on the initial adhesion and growth activities of osteoblasts, which is encouraging for its potential use as bone graft material. Moreover, collagen type I may serve as an excellent biocompatible carrier for osteotropic factors such as cell adhesion molecules (e.g. fibronectin) or bone-specific growth factors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
246

In vitro Differenzierung von Monozyten der Zelllinine RAW 264.7 zu Osteoklasten, deren Charakterisierung und Wechselwirkung mit Osteoblasten

Lesky, Thomas 27 June 2006 (has links)
Das RANKL/RANK/OPG-System spielt eine entscheidende Rolle in der Steuerung der Osteoklastendifferenzierung und -aktivierung durch Osteoblasten/ Knochenmarkbindegewebszellen im Rahmen des Knochenremodelings. Osteoblasten/Knochenmarkbindegewebszellen exprimieren RANKL. Dieses hat im Körper zwei Rezeptoren: RANK und OPG. RANKL kann durch Bindung an RANK auf Osteoklasten/Osteoklastenvorläuferzellen in Gegenwart von M-CSF seine osteoklastenstimulierende Wirkung entfalten. Der ebenfalls von Osteoblasten gebildete „decoy“-Rezeptor OPG blockiert als freies Protein durch Bindung an RANKL dessen Interaktion mit RANK und verhindert somit die Osteoklastogenese und Osteoklastenaktivierung. Das RANKL/RANK/OPG-System erfüllt im Körper noch weitere Funktionen im Immunsystem, in der Organentwicklung lymphatischer Gewebe und in der Entwicklung der laktierenden Brustdrüse. Viele Zytokine greifen hemmend oder aktivierend in die Osteoklastogenese ein. Sie können dies zum einen durch die Beeinflussung des RANKL/OPG-Verhältnisses, zum anderen durch direkte Interaktion mit Osteoklasten/Osteoklastenvorläuferzellen tun. Zytokine, die die Osteoklastogenese begünstigen, werden vor allem bei inflammatorischen Prozessen ausgeschüttet. Zusammen mit dem, bei diesen Zuständen von aktivierten T-Zellen produzierten RANKL kann dies längerfristig zu einem Knochenverlust führen, welcher sich im klinischen Bild der Osteoporose äußert. Aus den in der vorliegenden Dissertation durchgeführten Untersuchungen ergeben sich folgende Schlussfolgerungen: 1. Monozyten der Zelllinie RAW 264.7 lassen sich, wie bereits in der Literatur beschrieben, durch Zugabe von M-CSF und RANKL zu osteoklastenähnlichen Zellen differenzieren. 2. Die Osteoklastogenese lässt sich anhand der Veränderung verschiedener osteoklastenspezifischer Parameter charakterisieren. Es zeigt sich bei den mit M-CSF und RANKL stimulierten Monozyten eine erhöhte Transkription von CTR (Calcitoninrezeptor)- und TRAP (tartratresistente saure Phosphatase)-mRNA, eine erhöhte Expression des CTR-Proteins, eine erhöhte TRAP-Aktivität und eine Formierung TRAP-positiver mehrkerniger Riesenzellen, die in diesen Eigenschaften Osteoklasten entsprechen. Die zusätzliche Zugabe von TGF-b1 in Kombination mit M-CSF und RANKL resultiert in einer verstärkten Expression von CTR-mRNA und CTR-Protein. TRAP-mRNA-Expression und TRAP-Aktivität bleiben davon unbeeinflusst. 3. Als funktionelles Merkmal der in vitro differenzierten Osteoklasten können ihre Fähigkeit zur Ausbildung von Aktinringen und die Resorption von mineralisiertem Kollagen nachgewiesen werden. 4. Im Verlauf ihrer Differenzierung sekretieren Osteoblasten unterschiedliche Mengen an OPG. Das Maximum der Synthese liegt bei Tag 11. Freies RANKL lässt sich in Überständen von MC3T3-E1-Osteoblasten nicht nachweisen. 5. Das von Osteoblasten in das Medium abgegebene OPG ist in der Lage, die durch RANKL induzierte Osteoklastogenese von RAW-Monozyten zu hemmen. 6. In Kokulturen von MC3T3-E1-Osteoblasten und RAW-Monozyten kann keine Osteoklastogenese beobachtet werden, wahrscheinlich durch Fehlen der RANKLExprimierung oder zu starke OPG-Sekretion durch Osteoblasten. Besonders in der westlichen Welt mit ihrer hohen Lebenserwartung haben Krankheiten mit Knochenverlust sowie bösartige Neubildungen mit Knochenbefall eine große medizinische Bedeutung. Die Beeinflussung des RANKL/RANK/OPG-Systems bietet eine vielversprechende Möglichkeit zur Entwicklung hochwirksamer und nebenwirkungsarmer Medikamente zur Behandlung dieser Zustände.
247

Microgravity, Bone Homeostasis, and Insulin-Like Growth Factor-1

Smith, John Kelly 01 July 2020 (has links)
Astronauts at are risk of losing 1.0-1.5% of their bone mass for every month they spend in space despite their adherence to high impact exercise training programs and diets high in nutrients, potassium, calcium, and vitamin D, all designed to preserve the skeletal system. This article reviews the basics of bone formation and resorption and details how exposure to microgravity or simulated microgravity affects the structure and function of osteoblasts, osteocytes, osteoclasts, and their mesenchymal and hematologic stem cell precursors. It details the critical roles that insulin-like growth factor-1 and its receptor insulin-like growth factor-1 receptor (GFR1) play in maintaining bone homeostasis and how exposure of bone cells to microgravity affects the function of these growth factors. Lastly, it discusses the potential of tumor necrosis factor-related apoptosis-inducing ligand, syncytin-A, sclerostin inhibitors and recombinant IGF-1 as a bone-saving treatment for astronauts in space and during their colonization of the Moon.
248

Pyk2: Potential Regulator of Post Menopausal Bone Loss

Largura, Heather January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pyk2: Potential Regulator of Post-Menopausal Bone Loss H.W. LARGURA1,2*, P. ELENISTE2, S. HUANG2, S. LIU1, M. ALLEN3, A. BRUZZANITI2. 1Indiana University School of Dentistry Department Orthodontics and Oral Facial Development, 2Indiana University School of Dentistry Department of Oral Biology, 3Indiana University School of Medicine Department of Anatomy and Cell Biology, Indianapolis, Indiana, USA Osteoporosis is a pathologic condition of bone, commonly found in post-menopausal women, which occurs from an imbalance between bone formation and resorption. Following menopause, the bone resorbing activity of osteoclasts exceeds bone formation by osteoblasts, resulting in decreased trabecular and cortical bone and a subsequent decrease in bone mass. Reduced bone mass increases the risk of pathologic fracture of bones. Due to adverse effects associated with current treatment protocols for bone loss, alternative treatment modalities with reduced adverse effects are needed. Estrogen plays a role in maintaining balance in the bone remodeling cycle by controlling remodeling activation, osteoblast and osteoclast numbers, and their respective effectiveness in formation and resorption. With declining estrogen levels, this elegantly balanced interaction is altered and bone resorption exceeds bone formation, resulting in bone loss and increased bone fragility. Pyk2 is a protein tyrosine kinase that plays an important role in regulating bone resorption by osteoclasts, as well as osteoblast proliferation and differentiation. Deletion of the Pyk2 gene in mice leads to an increase in bone mass, in part due to dysfunctional osteoclast and osteoblast activity. In this study, we examined the role of Pyk2 in the effects of estrogen on bone mass. We used wild type (WT) and Pyk2 knock-out (KO) mice that had been ovariectomized (OVX) and treated with or without estrogen (E2)-releasing pellets. Control mice included sham OVX surgery receiving placebo pellet. We found that deletion of Pyk2 conferred increased bone mass in sham, OVX and OVX+E2 mice. In addition, Pyk2 KO mice supplemented with 17estradiol exhibited a marked increase in bone volume/trabecular volume, trabecular number, and trabecular thickness, but not cortical bone parameters compared to WT mice. Results of this study provide evidence for the role of Pyk2 in the effects of estrogen on bone mass. Understanding the role of Pyk2 in bone could lead to the development of new pharmaceutical targets for the treatment of bone loss associated with osteoporosis.
249

Testing the reliability and selectivity of different bone-cell-specific Cre- expressing mouse models for studying bone cell metabolism

Kambrath, Anuradha Valiya 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Cre/loxP system is a tool for targeted recombination of DNA. For applying Cre recombinase-mediated genome modifications, there is a requirement for reliable, high-fidelity, and specific transgenic expression of the Cre recombinase. This study focuses on the reliability of different bone cell specific Cre models in the Cre/loxP system. In this study, DMP1-Cre transgenic mouse which has a transgene driven by DMP1 promotor that allows Cre-expression only in late stage osteoblasts and osteocytes was used. Ctsk-Cre mouse with a driven by Ctsk promoter was used so that only osteoclasts would undergo Cre-mediated recombination. E2A-Cre mouse where the Cre recombinase is driven by a global promoter E2A was also included in this study as a control line to test the Cre reporter line Ai9. Dmp1-Cre, Ctsk-Cre and E2A-Cre mice were crossed to the fluorescent Cre-reporter line—Ai9, which harbors a floxed stop codon, followed by the fluorophoremTomato, inserted into the Rosa26 locus. This construct is expected to give red fluorescence when it recombines with Cre-expressing mouse cells and no fluorescence in non-recombinant mouse cells. Double positive (Ai9+/Cre+) offspring selected by PCR were perfused, and 5mu-m thick section of bone and soft tissues were examined for red fluorescent expression. Cre positive cells were quantitated using ‘ImageJ’ software program. The DMP1-vi Cre mouse results showed significant expression in the targeted osteocytes and osteoblasts. In addition, skeletal muscle tissue also showed significant Cre- expression. Ctsk-Cre mice showed significant expression in targeted osteoclasts. But brain tissue was positive in Cre-expression. Bone-Cre mouse models are expected to express Cre recombinase only in their respective bone cells and they have been used for gene deletion studies in bone cells. However, this study has revealed that the bone cell specific Cre mouse models DMP1-Cre and Ctsk-Cre have unexpected expression in muscle and brain respectively. In order to use these models for targeted gene deletion in bone cells, further testing and studies have to be conducted.
250

Contribution of rankl regulation to bone resorption induced by PTH receptor activation in osteocytes

Ben-awadh, Abdullah Nasser 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / PTH increases osteoclasts by upregulating RANKL in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell remains undefined. Recent findings demonstrate that PTH regulates gene expression in osteocytes and that these cells are an important source of RANKL. We therefore investigated whether direct regulation of the RANKL gene by PTH in osteocytes is required to stimulate osteoclastic bone resorption. To address this question, we examined bone resorption and RANKL expression in transgenic mice in which PTH receptor signaling is activated only in osteocytes (DMP1-caPTHR1) crossed with mice lacking the distal control region regulated by PTH in the RANKL gene (DCR -/-). Longitudinal analysis of circulating C-terminal telopeptide (CTX) in male mice showed elevated resorption in growing mice that progressively decreased to plateau at 3-5 month of age. Resorption was significantly higher (~100%) in DMP1-caPTHR1 mice and non-significantly lower (15-30%) in DCR -/-mice, versus wild type littermates (WT) across all ages. CTX in compound DMP1-caPTHR1; DCR -/-mice was similar to DMP1-caPTHR1 mice at 1 and 2 months of age, but by 3 months of age, was significantly lower compared to DMP1-caPTHR1 mice (50% higher than WT), and by 5 months, it was undistinguishable from WT mice. Micro-CT analysis revealed lower tissue material density in the distal femur of DMP1-caPTHR1 mice, indicative of high remodeling, and this effect was partially corrected in compound vi mice. The increased resorption exhibited by DMP1-caPTHR1 mice was accompanied by elevated RANKL mRNA in bone at 1 and 5 months of age. RANKL expression levels displayed similar patterns to CTX levels in DMP1-caPTHR1; DCR -/-compound mice at 1 and 5 month of age. The same pattern of expression was observed for M-CSF. We conclude that resorption induced by PTH receptor signaling requires direct regulation of the RANKL gene in osteocytes, but this dependence is age specific. Whereas DCR-independent mechanisms involving gp130 cytokines or vitamin D 3 might operate in the growing skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate resorption induced by PTH receptor signaling in the adult skeleton.

Page generated in 0.0565 seconds