• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 14
  • 2
  • Tagged with
  • 136
  • 136
  • 136
  • 52
  • 39
  • 34
  • 34
  • 33
  • 32
  • 31
  • 30
  • 29
  • 19
  • 17
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Biogas and Cattle Organs : An Alternative Significant Source of Energy for Sustainable Development in Rural Bangladesh

Jamil, Adnan January 2008 (has links)
A study has been conducted to assess the possibilities to introduce dead cattle organs as the raw material for biogas generation at the rural household level in Bangladesh. At the same time, the present energy situation in Bangladesh is highlighted. The actors in the energy sector have been identified. The energy policy of Bangladesh is not transparent and there seems to be no energy strategy for the country. Possibilities of other renewable sources of energy are also discussed. Biomass fuels comprise the main source of energy for the rural people and the major share of energy use is consumed after cooking and household lightning. Enormous amount of labor is spent in gathering and collecting of fuel wood and agricultural residues that reduces productivity among women and young children. Besides, biogas is generated from agricultural residues and animal excreta in Bangladesh. Tremendous pressure on rural forests for fuel wood is increasing and environmental degradation is occurring. Agricultural lands are losing vital nutrients as people are using crop residues and animal excreta for energy. Under present condition, the possibilities of adopting biogas technology and dead cattle organs as the raw materials to generate biogas is analyzed in terms of availability of the raw material. Sustainable development using biogas is also considered. And lastly, some recommendation is suggested, based on the current energy situation of Bangladesh.
82

Elevers geografiska omvärldsbilder : en studie av hur elever i år 6 uppfattar det geografiska rummet. / Pupils geographical world picture : a study of how pupils in the sixth form apprehends to the geographical space.

Wennerbo, AnnLouise January 2003 (has links)
Denna studie är en undersökning av hur elever i år 6 uppfattade det geografiska rummet, vilka omvärldsbilder elever i skolan innehade, hur de påverkades av olika intryck från omgivningen samt om elevernas omvärldsbilder förändrades under en termin. Att inneha en omvärldsbild innebär att ha en föreställning om hur den rumsliga världen ser ut och förhåller sig. Undersökningen var av empirisk art och bestod av en namngeografisk undersökning av geografiska objket i Sverige, elevernas ritade bilder av världen, intervjufrågor samt en kartförståelseuppgift. Studien genomfördes vid två olika tillfällen för att se på eventuella förändringar i elevernas omvärldsbilder. Studien visade på att elevernas omvärldsbilder påverkades, utvecklades och innehöll all den information individen mötte och hade med sig sedan tidigare om den rumsliga världen. Undersökningen visade även på att omvärldsbilder kan förändras och utvecklas unnder en termin.
83

The Use of the Ostracode Cyprideis Americana (Sharpe) as a Proxy for Salinity in Bahamian Lake Systems

Bowles, Rachel E. 01 August 2013 (has links)
Ostracodes, bi-valved crustaceans, are potentially excellent proxies for salinity.They are abundant, react to changes in salinity, and secrete low-magnesium calcite shells that preserve information about their host water chemistry. Changes in valve trace element concentration, stable isotope composition, and sieve pore shape values have been linked to changes in salinity. This study analyzed the response of the euryhaline ostracode, Cyprideis americana, to salinity in six lakes from two Bahamian islands across two seasons. The purpose of this work was to determine which compositional and morphological variables in C. americana are the most useful for paleosalinity reconstructions.Ostracode and water samples were collected from lakes of varying water chemistry on San Salvador Island (winter and summer seasons), and Exuma (winter season). Dissolved oxygen, pH, salinity, and temperature measurements were taken for each lake. The best-preserved valves from each lake were analyzed for sieve pore circularity, Mg and Ca concentrations, and δ18 O isotopic composition. Mg/Ca ratios and Kd[Mg] values were calculated for each lake. Each parameter was plotted against salinity for all of the lakes and for lakes from each season and island. Only the samples collected during the summer followed expected trends: with increases in lake water salinity, Mg/Ca ratio decreased, δ18 O composition increased, and sieve pore circularity decreased. Samples collected from the winter field sessions did not follow expected trends, potentially due to the breeding and moulting habits of C. americana. Temperature was more correlative with valve composition than a previous study of C. americana suggests, but is supportive of similar correlations of Cyprideis species in continental and other island settings. The valve Mg/Ca ratio and mean sieve pore circularity showed the best correlation with salinity and are the variables that will be most useful in paleosalinity studies from sediment cores. Future work should further investigate the relationship between mean sieve pore circularity and lake salinity as well as the breeding and moulting habits of C. americana. Such work may allow for past salinity ranges to be reconstructed from fossil C. americana samples.
84

Impacts of the Anomalous Mississippi River Discharge and Diversions on Phytoplankton Blooming in Northeastern Gulf of Mexico

O'connor, Brendan 01 January 2013 (has links)
On April 20, 2010 a tragic explosion aboard the Deepwater Horizon (DWH) drilling rig marked the beginning of one of the worst environmental disasters in history. For 87 days oil and gas were released into the Gulf of Mexico. In August 2010, anomalous phytoplankton activity was identified in the Northeastern Gulf of Mexico, using the Fluorescence Line Height (FLH) ocean color product. The FLH anomaly was bound by approximately 30-28 degrees North and 90 and 86 degrees West and there was a suggestion that this anomaly may have occurred due to the presence of oil. This study was designed to examine alternative explanations and to determine what influence the Mississippi River and the freshwater diversions, employed in the response efforts, may have had on the development of the FLH anomaly. The combination of the anomalously high flow rate in the Mississippi River observed in June-August 2010, the use of freshwater diversions, and three severe storms increased the flow of water through the adjoining marshes. We propose that these conditions reduced the residence time of water and nutrients on the wetlands, and likely mobilized nutrients leading to increased fresh water and nutrients being discharge to the coasts around the Mississippi Delta. Salinity contour maps created from data collected by ships operating in the Northeastern Gulf of Mexico showed that the 31 isohaline was upwards of 250km east of the Mississippi River Birds Foot Delta in August 2010. The American Seas (AmSeas) numerical circulation model was used to examine the dispersal and distribution of water parcels from the Mississippi River and freshwater diversions. Two virtual particle seeding locations were used to trace particles to obtain a measure of the percentage of particles entering a Region of Interest (ROI) located in the center of the FLH anomaly, i.e. 150 km east of the Mississippi Delta. All environmental data examined suggest that the eastward dispersal of the Mississippi River water including that derived from freshwater diversions and storm activity contributed to the development of FLH anomaly in August 2010. Chapter two examines the spectral characteristics of water and oil collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Several peaks in the spectral features of the total radiance of surface oil between 1907nm and 2400nm appear to be absent for water. An algorithm (Spectral Line Height) was created to measure the height of the peak at 2142nm relative to a baseline between 2013nm and 2390nm. A normalized difference technique developed by the USGS was used as a validation tool. Preliminary results of the SLH technique appear to compare favorably with the results derived using the USGS technique. The SLH technique worked in areas that did not show sunglint or shallow bottom features. Sunglint areas would require additional correction to remove the effect of specular reflection. The SLH technique shows promise but will require validation to develop into an operational remote sensing method.
85

Harmful Algal Blooms of the West Florida Shelf and Campeche Bank: Visualization and Quantification using Remote Sensing Methods

Soto Ramos, Inia Mariel 01 January 2013 (has links)
Harmful Algal Blooms (HABs) in the Gulf of Mexico (GOM) are natural phenomena that can have negative impacts on marine ecosystems on which human health and the economy of some Gulf States depends. Many of the HABs in the GOM are dominated by the toxic dinoflagellate Karenia brevis. Non-toxic phytoplankton taxa such as Scrippsiella sp. also form intense blooms off the Mexican coast that result in massive fish mortality and economic losses, particularly as they may lead to anoxia. The main objectives of this dissertation were to (1) evaluate and improve the techniques developed for detection of Karenia spp. blooms on the West Florida Shelf (WFS) using satellite remote sensing methods, (2) test the use of these methods for waters in the GOM, and (3) use the output of these techniques to better understand the dynamics and evolution of Karenia spp. blooms in the WFS and off Mexico. The first chapter of this dissertation examines the performance of several Karenia HABs detection techniques using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images and historical ground truth observations collected on the WFS from August 2002 to December 2011. A total of 2323 in situ samples collected by the Florida Fish and Wildlife Research Institute to test for Karenia spp. matched pixels with valid ocean color satellite observations over this period. This dataset was used to systematically optimize variables and coefficients used in five published HAB detection methods. Each technique was tested using a set of metrics that included the F-Measure (FM). Before optimization, the average FM for all techniques was 0.47. After optimization, the average FM increased to 0.59, and false positives decreased ~50%. The addition of a Fluorescence Line Height (FLH) criterion improved the performance of every method. A new practical method was developed using a combination of FLH and Remote Sensing Reflectance at 555 nm (Rrs555-FLH). The new method resulted in an FM of 0.62 and 3% false negatives, similar to those from more complex techniques. The first chapter concludes with a series of recommendations on how to improve the detection techniques and how to take these results a step further into a Gulf wide observing systems for HABs. In chapter two, ocean color techniques were used to examine the extension, evolution and displacement of four Karenia spp. events that occurred in the WFS between 2004 and 2011. Blooms were identified in the imagery using the new Rrs-FLH method and validated using in situ phytoplankton cell counts. The spatial extension of each event was followed in time by delineating the blooms. In 2004 and 2005, the WFS was affected by a series of hurricanes that led to high river discharge and intense sediment resuspension events. Both processes had an impact on HAB occurrence. For example, I tracked a Karenia spp. bloom found in late December 2004 approximately 40-80 km offshore Saint Petersburg, which then expanded reaching an extension of >8000 km2 in February 2005. The bloom weakened in spring 2005 and intensified again in summer reaching >42,000 km2 after the passage of hurricane Katrina in August 2005. This bloom covered the WFS from Charlotte Harbor to the Florida Panhandle. Two other cases were studied in the WFS. The results of the Hybrid Coordinate Ocean Model from the U.S. Navy aid understanding the dispersal of the blooms. During fall 2011, three field campaigns to study HABs in Mexico were conducted to do an analysis of optical properties and explore the possibility of using ocean color techniques to distinguish between the main phytoplankton blooms in that region. Three main bloom scenarios were observed in the Campeche Bank region: massive diatom blooms, blooms dominated by Scrippsiella spp., and Karenia spp. blooms. The normalized specific phytoplankton absorption spectra were found to be different for Karenia spp. and Scrippsiella sp. blooms. A new technique that combines phytoplankton absorption derived from MODIS data and the new technique developed in Chapter One showed potential for a detection technique that can distinguish between Karenia and Scrippsiella blooms. Additional work is needed to improve the new technique developed for Mexican waters, but results show potential for detection techniques that can be used Gulf-wide. This will help better understand the dynamic and possible connectivity of phytoplankton blooms in the GOM.
86

Predicting Ecosystem Response from Pollution in Baltic Archipelago areas using Mass-balance Modelling

Karlsson, Olof Magnus January 2011 (has links)
Baltic archipelago areas have high nature values despite being polluted from various antrophogenic activities within the Baltic Sea catchment area and from long-range transport of airborne substances. The discovery of environmental problems in the Baltic Sea in the 1960s led to countermeasures that gradually gave results in reducing the toxic pollution, e.g. from PCBs. Today, much of the environmental management is focused on reducing the effects of eutrophication. There is a demand from society on science to develop strategies that can direct remedial actions so that the cost-effectiveness is maximised. This work focuses on how mass-balance models can be used to understand how coastal ecosystems are controlled by abiotic processes and to predict the response to changes in loading of different substances. Advection, sedimentation and burial are examples of general transport processes that are regulated by morphometrical characteristics, e.g. size, form, effective fetch and topographical openness. This is why different coastal areas have different sensitivity to loading of pollutants. A comparison of six phosphorus and chlorophyll models of different complexity showed that the model performance was not improved with more state variables of total phosphorus (TP) than two water and two sediment compartments. Modelling chlorophyll as a separate state variable did not improve the results for individual values compared to a simple regression against total phosphorus in surface water. Field investigations of the phosphorus content in accumulation sediments along the coast of Svealand showed a distribution pattern that probably is related to differences in the redox status. The average content of mobile phosphorus was much higher than previously found in offshore Baltic sediments indicating that sediments may play an important role for the phosphorus turnover in Baltic archipelago areas. A one-year field study to measure the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in water, sediments and fish during different seasons was carried out in Kallrigafjärden Bay. The collected data set was used to test a mass-balance model for PCCD/F-turnover. It was possible to reproduce the concentrations of different PCDD/F-congeners with high accuracy using a general model approach, including one water compartment and two sediment compartments, indicating that the applied model has the necessary qualifications for successful predictions of PCDD/F-turnover in Baltic coastal areas. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 736
87

Popular geographies: celebrating the nation in Canadian Geographic, Australian Geographic and New Zealand Geographic, 1995-2004 : a thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Geography at Massey University, Palmerston North, New Zealand

Wilson, Andrew Charles Bruce January 2008 (has links)
Popular geography magazines like National Geographic (NG) provide readers with a lens of the world around them. Yet sadly they often only serve a limited utilitarian purpose as dust collectors on coffee tables of hospital waiting rooms or doctors’ practices. It should be of little surprise then that the relative importance of geographic magazines as a representational forum has been underestimated historically. The importance of geographic magazines as an outlet for creating and disseminating preconceived visions of what may be termed ‘popular geographies’ has only become the subject of scrutiny in the last two decades. Authors including Lutz and Collins (1993) and Rothenberg (1994, 2007) have reflected critically upon the place of NG as a powerful ideological institution for legitimating particular visions of the world in the wider corpus of the discipline of geography. Yet while there has been a substantial volume of work dedicated to unravelling the situated lens of NG there has been no research devoted to deciphering the lenses of other geography magazines such as Canadian Geographic (CG), Australian Geographic (AG) or New Zealand Geographic (NZG). These magazines also embody the ideals of adventure, discovery and nature made famous by NG but purvey geography through distinctively national narratives. Through discourse analysis the thesis examines these three magazines in order to unravel geographic imaginations of nationalism in CG, AG and NZG and in the process challenge divergent conceptions of geography itself as both an academic discipline and popular subject.
88

Hyperspectral proximal sensing of the botanical composition and nutrient content of New Zealand pastures : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science

Sanches, Ieda Del'Arco January 2009 (has links)
The potential of hyperspectral proximal sensing to quantify sward characteristics important in making critical decisions on the management of sheep and dairy pastures in New Zealand has been investigated. Hyperspectral data were acquired using an ASD FieldSpec® Pro FR spectroradiometer attached to the Canopy Pasture Probe (CAPP). The CAPP was developed to enable the collection of in situ reflectance data from New Zealand pasture canopies independent of ambient light conditions. A matt white ceramic tile was selected as a reflectance standard to be used with the CAPP, after testing a variety of materials. Pasture reflectance factor spectra between 350-2500 nm (with spectral resolutions of 3 nm between 350-1000 nm and 10 nm between 1000-2500 nm) and pasture samples were collected from six hill country and lowland areas, across all seasons (August 2006 to September 2007) in a number of regions in the North Island of New Zealand. After pre-processing (e.g. spectral averaging, de-stepping, elimination of noisy wavelengths, smoothing) the spectral data collected from sites were correlated against pasture botanical composition (expressed as proportions of grass, legume and weed) and pasture nutrients (nitrogen, phosphorus, potassium, calcium, magnesium, sodium and sulphur) expressed in percentage of dry matter (%) and amount (kg ha-1) using partial least squares regressions (PLSR). The accuracy and precision of the calibrations were tested using either the full cross-validation leave-one-out method or testing datasets. Regressions were carried out using the reflectance factor data per se and after mathematical transformation, including first derivative, absorbance and continuum-removed spectra. Overall best results were obtained using the first derivative data. The quality of predictions varied greatly with the pasture attribute, site and season. Some reasonable results were achieved for the prediction of pasture grass and legume proportions when analysing samples collected during autumn (grass: R2 > 0.81 and SD/RMSEP 2.3 and legume: R2 > 0.80 and SD/RMSEP 2.2), but predicting pasture weed content was poor for all sites and seasons (R2 = 0.44 and SD/RMSEP = 1.2). The inaccurate predictions might be explained by the fact that the diversity found in the field and observed in the pasture spectral data was not taken into account in the pasture botanical separation. The potential for using proximal sensing techniques to predict pasture nutrients in situ was confirmed, with the sensing of pasture N, P and K increased by the procedure of separating the data according to the season of the year. The full potential of the technology will only be realised if a substantial dataset representing all the variability found in the field is gathered. The importance of obtaining representative datasets that embrace all the biophysical factors (e.g. pasture type, canopy structure) likely to affect the relat ionship, when building prediction calibrations, was highlighted in this research by the variance in the predictions for the same nutrient using different datasets, and by the inconsistency in the number of common wavelengths when examining the wavelengths contributing to the relationship. The ability to use a single model to predict multiple nutrients, or indeed individual nutrients, will only come through a good understanding of the factors likely to influence any calibration function. It has been demonstrated in this research that reasonably accurate and precise pasture nutrient predictions (R2 > 0.74 and SD/RMSEP 2.0) can be made from fresh in situ canopy measurements. This still falls short of the quality of the predictions reported for near infrared reflectance spectroscopy (NIRS) for dried, ground samples analysed under controlled laboratory conditions
89

Evaluating satellite and supercomputing technologies for improved coastal ecosystem assessments

Mccarthy, Matthew James 06 November 2017 (has links)
Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960’s. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration – two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p < 0.02). The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years of water-quality time series with which to perform evaluations against land-cover change. Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover assessments could not be used as an explanatory variable because of the low temporal resolution (i.e. approximately one map per five-year period). Ocean color metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate indices like the North Atlantic Oscillation and El Niño Southern Oscillation index were also examined as possible drivers of long-term changes. Extreme turbidity events were defined by the 90th and 95th percentile observations over each time step. Wind speed, river discharge and El Niño best explained variability in turbidity time-series and extreme events (R2 > 0.2, p < 0.05), but this varied substantially between time steps and estuaries. The background land cover analyses conducted for coastal water quality studies showed that there are substantial discrepancies between the wetland extent estimates mapped by local, state and federal agencies. The third chapter of my research sought to examine these differences and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat imagery (30-meter resolution). When compared to maps produced separately by the National Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and National Wetland Inventory, we found that these historical land cover products overestimated by 2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. We could find no study that had utilized more than six of these commercial images for a given project. Part of the problem is cost of the images, but there is also the cost of processing the images, which is typically done one at a time and with substantial human interaction. Chapter four explains an approach to automate the preprocessing and classification of imagery to detect wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and Linux were used to ingest 130 WorldView-2 images and to generate maps that included wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) based on ground validation data. Typical processing methods would have required 4-5 months to complete this work, but this protocol completed the 130 images in under 24 hours. Chapter five of the dissertation reviews coastal management case studies that have used satellite technologies. The objective was to illustrate the utility of this technology. The management sectors reviewed included coral reefs, wetlands, water quality, public health, and fisheries and aquaculture.
90

Modeling the Construction and Evolution of Distributed Volcanic Fields on Earth and Mars

Richardson, Jacob Armstrong 21 March 2016 (has links)
Magmatism is a dominant process on Earth and Mars that has significantly modified and evolved the lithospheres of each planet by delivering magma to shallow depths and to the surface. Two common modes of volcanism are present on both Earth and Mars: central-vent dominated volcanism that creates large edifices from concentrating magma in chambers before eruptions and distributed volcanism that creates many smaller edifices on the surface through the independent ascent of individual magmatic dikes. In regions of distributed volcanism, clusters of volcanoes develop over thousands to millions of years. This dissertation explores the geology of distributed volcanism on Earth and Mars from shallow depths (~1 km) to the surface. On long time scales, distributed volcanism emplaces magmatic sills below the surface and feeds volcanoes at the surface. The change in spatial distribution and formation rate of volcanoes over time is used to infer the evolution of the source region of magma generation. At short time scales, the emplacement of lava flows in these fields present an urgent hazard for nearby people and infrastructure. I present software that can be used to simulate lava flow inundation and show that individual computer codes can be validated using real-world flows. On Mars, distributed volcanism occurs in the Tharsis Volcanic Province, sometimes associated with larger, central-vent shield volcanoes. Two volcanic fields in this province are mapped here. The Syria Planum field is composed three major volcanic units, two of which are clusters of 10s to >100 shield volcanoes. This area had volcanic activity that spanned 900 million years, from 3.5-2.6 Ga. The Arsia Mons Caldera field is associated with a large shield volcano. Using crater age-dating and mapping stratigraphy between lava flows, activity in this field peaked at ~150 Ma and monotonically waned until 10-90 Ma, when volcanism likely ceased.

Page generated in 0.0842 seconds