• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 41
  • Tagged with
  • 417
  • 417
  • 353
  • 326
  • 326
  • 41
  • 36
  • 31
  • 31
  • 28
  • 25
  • 24
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Data-Driven Methods for Sonar Imaging

Nilsson, Lovisa January 2021 (has links)
Reconstruction of sonar images is an inverse problem, which is normally solved with model-based methods. These methods may introduce undesired artifacts called angular and range leakage into the reconstruction. In this thesis, a method called Learned Primal-Dual Reconstruction, which combines a data-driven and a model-based approach, is used to investigate the use of data-driven methods for reconstruction within sonar imaging. The method uses primal and dual variables inspired by classical optimization methods where parts are replaced by convolutional neural networks to iteratively find a solution to the reconstruction problem. The network is trained and validated with synthetic data on eight models with different architectures and training parameters. The models are evaluated on measurement data and the results are compared with those from a purely model-based method. Reconstructions performed on synthetic data, where a ground truth image is available, show that it is possible to achieve reconstructions with the data-driven method that have less leakage than reconstructions from the model-based method. For reconstructions performed on measurement data where no ground truth is available, some variants of the learned model achieve a good result with less leakage.
342

Creating Bushing Core Geometries

Damsgaard Falck, Hanna, Ring, Johanna, Svensson, Erik January 2021 (has links)
Bushings are a necessary component of the transformers in the power grid. A bushing is used to control the electric field's strength and shape. It is also an insulator for high-voltage conductors. The bushing enables a conductor to be safely brought through a grounded barrier. In this report, several methods for creating a 2D axi-symmetrical bushing core geometry in COMSOL Multiphysics were developed. The geometry includes the conductor, hollow area inside the conductor, the RIP, the mold and aluminum foils. First, the base-geometry was constructed, which includes all geometry parts except the foils. Afterward, two different approaches were used to construct the foils. The first approach was to automatically build a requested number of foils. The second approach was to create the foils based on data from excel-sheets. The developed method should be able to create both full foils and partial foils. A total of four foil methods were developed. The first method used COMSOL's Model Builder to create a requested number of foils uniformly distributed within the base-geometry. The second method used COMSOL's Application Builder to create a requested number of foils based on mathematical expressions. The third method reads data from an excel sheet to create the foils in COMSOL. Method four is an improved version of method three that can create partial foils as well as the base-geometry. Foil methods II, III, and IV, created every foil as a separate geometrical object. As a result, an associated method that deletes the foils were also developed for each of these methods. A conclusion that the fourth method was the most realistic method of creating a bushing core could be draw due to, among other factors, it is the only method that can build partial foils.
343

Surface Engineering of Bipolar Plates for PEM-Water Electrolysis : Cost-Effective Corrosion Protection

Dettke, Tristan January 2021 (has links)
Hydrogen production by PEM-Water electrolysis is an environmentally benign and promising approach to store excess energy from renewable energy sources but facing drawbacks of high costs, mainly due to a harsh cell-environment. The aim of my Master Thesis was to reduce the costs of the most expensive cell component, the bipolar plate by surface engineering. Thin films of Ti, Zr and alloys thereof, as well as Nb and W have been vapor deposited by either cathodic arc deposition or magnetron sputtering in an industrial scale coating system. The nitrides, carbides, and pure metals from the previously mentioned transition metals were investigated by crosscut adhesion tests, interfacial contact resistance, electrochemical corrosion tests, scanning electron microscopy and energy dispersive X-ray spectroscopy. Highly promising thin film materials have been developed to functionalize the bipolar plates, enabling significant cost reductions of the PEMWE-cell.
344

Evaporation Duct Modelling for a Wave-Propagation Simulator / Avdunstningskanalmodellering för en vågpropageringssimulator

Eklund, Oscar January 2022 (has links)
Long-range communication proves to be a challenge due to the Earth’s curvature, since electromagnetic waves propagate away from the Earth’s surface in a free atmosphere. A possible solution to beyond line-of-sight communication is the atmospheric phenomenon known as the evaporation duct. Ducting occurs when the refractive index of the atmosphere rapidly decreases with height, which leads to ray trajectories bending inward towards the surface of the Earth, effectively creating a waveguide and enabling long-distance communication. In this work, the models by Paulus-Jeske and Babin-Young-Carton are investigated and implemented in MATLAB for calculation of the evaporation duct height and for modelling the refractive index of the atmosphere. The rapid decrease in refractive index giving rise to evaporation ducts occurs due to evaporation of water within the atmosphericsurface layer (<100 m over the surface), which is the domain of turbulent mixing in the atmosphere. With atmospheric data from a Weather API by Meteomatics, Monin-Obukhov similarity theory for the atmospheric surface layer is combined with a bulk flux parameterization scheme from the COARE experiment to determine the air-sea fluxes in the lower troposphere. The surface layer variables with stability functions from Businger-Dyer, Beljaars-Holtslag, Cheng-Brutsaert, and the SHEBA experiment are used in the evaporation duct models proposed by Paulus-Jeske and Babin-Young-Carton to calculate the evaporation duct height, finding that the latter is a valid method with Monin-Obukhov stability functions based on the SHEBA experiment. The modelled refractive index is inserted into an already existing wave propagation model to investigate and validate the findings. / Långdistanskommunikation är en utmaning på grund av jordens krökning, eftersom elektromagnetiska vågor sprider sig bort från jordens yta vid propagering i fri atmosfär. En möjlig lösning för kommunikation bortom siktlinjen är det atmosfäriska fenomenet som kallas avdunstningskanal. Det uppstår när atmosfärens brytningsindex snabbt minskar med höjden, vilket leder till att strålbanorna böjer sig inåt mot jordens yta, vilket i praktiken skapar en vågledare och möjliggör långdistanskommunikation. I detta arbete undersöks och implementeras modeller beskrivna av Paulus-Jeske och Babin-Young-Carton i MATLAB för beräkning av avdunstningskanalens höjd och för modellering av atmosfärens brytningsindex. Den snabba minskningen av brytningsindexet som ger upphov till avdunstningskanaler beror på avdunstning avvatten i det atmosfäriska ytskiktet (<100 m över ytan), som är det område där den turbulenta blandningen i atmosfären sker. Med atmosfäriska data från Weather API av Meteomatics kombineras Monin-Obukhovs likvärdighetsteori för det atmosfäriska ytskiktet med ett parametriseringsschema för bulkflöden från COARE-experimentet för att bestämma luft- och havsflödena i den nedre troposfären. Variablerna för ytskiktet med stabilitetsfunktioner från Businger-Dyer, Beljaars-Holtslag, Cheng-Brutsaert och SHEBA-experimentet används i de modeller för avdunstningskanaler som föreslagits av Paulus-Jeske och Babin-Young-Carton för att beräkna avdunstningskanalens höjd, varvid det konstateras att den sistnämnda metoden är en giltig metod med Monin-Obukhovs stabilitetsfunktioner baserade på SHEBA-experimentet. Det modellerade brytningsindexet införs i en redan befintlig vågutbredningsmodell för att undersöka och validera resultaten.
345

Phenomenological studies of dimensional deconstruction

Hällgren, Tomas January 2005 (has links)
In this thesis, two applications of dimensional deconstruction are studied. The first application is a model for neutrino oscillations in the presence of a large decon- structed extra dimension. In the second application, Kaluza{Klein dark matter from a latticized universal extra dimension is studied. The goal of these projects have been twofold. First, to see whether it is possible to reproduce the relevant features of the higher-dimensional continuum theory, and second, to examine the effect of the latticization in experiments. In addition, an introduction to the the- ory of dimensional deconstruction as well as to the theory of continuous extra dimensions is given. Furthermore, the various higher-dimensional models, such as Arkani-Hamed{Dvali{Dimopolous (ADD) models and models with universal extra dimensions, that have been intensively studied in recent years, are discussed. / QC 20101202
346

Flash Pulse Thermography Measurements of Coat Thickness

Häggkvist, Alexander January 2023 (has links)
The application of varnish, metal coats, and paint is a common practice for modifying or enhancing material properties. Metal coats are frequently used as protective layers against corrosion, heat, and wear, while also influencing characteristics like conductivity, weight, and production costs. Achieving the optimal thickness of the coating is critical, as a too-thin layer may not offer sufficient protection, while an overly thick layer adds unnecessary weight and increases expenses. Therefore, it is crucial to accurately measure the coating thickness without causing any damage. This project focuses on utilising flash pulse thermography, a non-invasive and non-destructive measuring technique, with three algorithms — Dynamical Thermal Tomography, Power Function, and Pulse Phase Thermography — to measure and differentiate between plates with known variations in the number of coating layers. The study also aims to identify the limiting factors associated with the experimental equipment and the characteristics of the thermography algorithms. The thickness calculations were performed both individually for each plate and simultaneously for multiple plates. The results demonstrate that Dynamical Thermal Tomography exhibits superior precision and strong linear correlation when measuring individual plates. On the other hand, the Power Function algorithm outperforms in effectively distinguishing between two plates simultaneously, while providing decent precision for individual plates. It is worth noting that the framerate of the camera significantly affects the performance and serves as the primary limiting factor in this specific experimental setup.Further investigations are necessary to obtain more conclusive results and determine the limitations of accuracy when measuring coating thickness.
347

Exposure Monitoring and Dosimetry - Optimizing Radiation Protection in Interventional Cardiology / Exponeringsanalys och Dosimetri - Optimering av praktiskt strålskydd inom interventionell kardiologi

Pettersson, Amanda January 2023 (has links)
During interventional cardiology (IC), medical staff are exposed to scattered ionizing radiation from the patient, potentially leading to various radiation-induced health effects. Therefore, shielding devices are routinely used to reduce occupational exposure during IC procedures. This study explores how the positioning of shielding devices impacts radiation protection efficiency in clinical scenarios. The study aims to determine optimal setups and potential pitfalls that might significantly reduce the efficiency of the shielding devices. It also explores the relationship between DICOM-based production data, clinical observations, and phantom-based measurements to add knowledge to the research field of radiation protection in IC. Clinical DICOM-based production data from 4976 procedures were analyzed to identify C-arm projection angles used during different procedure types. This data and the results of an observational study were used to determine a scattered radiation measurement setup. A survey meter was used to measure air kerma at seven heights in the operator position while an anthropomorphic phantom was irradiated. The measurements were distributed over seven projections with 56 position combinations of the shielding devices. A total of 3171 measurements were performed. The measurements suggest significant variations in the operator dose depending on the projection and how the shielding devices are positioned. The most optimal combination of shielding devices was achieved when placing the table-mounted shield along the table, the ceiling-suspended shield caudal close to the phantom, and without the patient drape. Conversely, the least optimal combination was achieved when placing the table-mounted shield flared out, the ceiling-suspended shield cranial 10 cm above the phantom, and without the patient drape. The air kerma rate for these two shielding setups with the LAO25/CAUD30 projection was reduced from 0.19 μGy/s to 0.05 μGy/s at 110 cm from the floor. This height was shown to be the hardest to properly shield. Despite the implementation of the most optimal shielding combination, it is evident that certain heights present difficulties in effectively protecting the operator from scattered radiation.
348

Study of novel electronic materials by mid-infrared and terahertz optical Hall effect

Armakavicius, Nerijus January 2017 (has links)
Development of silicon based electronics have revolutionized our every day life during the last three decades. Nowadays Si based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, Si cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for a progress in state of the art electronics. Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in the current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene. III-group nitrides have been extensively studied and already have proven their high efficiency as light sources for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for III-group nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions. Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical contact within the structure. Moreover, the use of electrical contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures. The optical Hall effect is an external magnetic field induced optical anisotropy in  conductive layers due to the motion of the free charge carriers under the influence of the Lorentz force, and is equivalent to the electrical Hall effect at optical frequencies. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. In principle, a single optical Hall effect measurement can provide quantitative information about free charge carrier types, concentrations, mobilities and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. Further, it was demonstrated that for transparent samples, a backside cavity can be employed to enhance the optical Hall effect. Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric data by varying physically significant parameters. Analysis of the optical response of samples, containing free charge carriers, employing optical models based on the classical Drude model, which is augmented with an external magnetic field contribution, provide access to the free charge carrier properties. The main research results of the graduate studies presented in this licentiate thesis are summarized in the five scientific papers. Paper I. Description of the custom-built terahertz frequency-domain spectroscopic ellipsometer at Linköping University. The terahertz ellipsometer capabilities are demonstrated by an accurate determination of the isotropic and anisotropic refractive indices of silicon and m-plane sapphire, respectively. Further, terahertz optical Hall effect measurements of an AlGaN/GaN high electron mobility structures were employed to extract the two-dimensional electron gas sheet density, mobility and effective mass parameters. Last, in-situ optical Hall effect measurement on epitaxial graphene in a gas cell with controllable environment, were used to study the effects of environmental doping on the mobility and carrier concentration. Paper II. Presents terahertz cavity-enhanced optical Hall measurements of the monolayer and multilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm−2 range and a carrier mobility of 1550 cm2/V·s. For the multilayer epitaxial graphene, n-type doping with a carrier density in the low 1013 cm−2 range, a mobility of 470 cm2/V·s and an effective mass of (0.14 ± 0.03) m0 were extracted. The measurements demonstrate that cavity-enhanced optical Hall effect measurements can be applied to study electronic properties of two-dimensional materials. Paper III. Terahertz cavity-enhanced optical Hall effect measurements are employed to study anisotropic transport in as-grown monolayer, quasi free-standing monolayer and quasi free-standing bilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed a strong anisotropy in the carrier mobilities of the quasi freestanding bilayer graphene. The anisotropy is demonstrated to be induced by carriers scattering at the step edges of the SiC, by showing that the mobility is higher along the step than across them. The scattering mechanism is discussed based on the results of the optical Hall effect, low-energy electron microscopy, low-energy electron diffraction and Raman measurements. Paper IV. Mid-infrared spectroscopic ellipsometry and mid-infrared optical Hall effect measurements are employed to determine the electron effective mass in an In0.33Ga0.67N epitaxial layer. The data analysis reveals slightly anisotropic effective mass and carrier mobility parameters together with the optical phonon frequencies and broadenings. Paper V. Terahertz cavity-enhanced optical Hall measurements are employed to study the free charge carrier properties in a set of AlGaN/GaN high electron mobility structures with modified interfaces. The results show that the interface structure has a significant effect on the free charge carrier mobility and that the sample with a sharp interface between an AlGaN barrier and a GaN buffer layers exhibits a record mobility of 2332±73 cm2/V·s. The determined effective mass parameters showed an increase compared to the GaN value, that is attributed the the penetration of the electron wavefunction into the AlGaN barrier layer.
349

Heteroepitaxial Growth of GaN Film on Si substrate by Magnetron Sputtering

Mohammadianrasnani, Zahra January 2023 (has links)
In this study, the effect of AlN buffer layer structure and morphology on the GaN films deposited on Si (111) substrate by reactive DC magnetron sputtering have been studied. For structural and morphological characterization X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used. It is found that AlN films without Al pre-deposition on Si have a poor crystalline quality due to the formation of an amorphous layer at Si/AlN interface. Various initial Al sputtering durations on Si substrate result in changing the AlN buffer layer’s quality and morphology and choosing proper deposition duration can improve AlN buffer layer and the subsequent GaN layer quality. It is found that more than 15 s Al pre deposition can suppress the amorphous layer formation and enhance the film quality. The Rocking curve FWHM for both in-plane and out-of-plane orientation decreased from 1.86 and 1.56   to 0.4   and 0.3  , respectively, by 4 minutes Al pre-deposition on Si, however, overlong Al deposition results in poor surface morphology. It is found that 15s Al deposition is sufficient to enhance the quality as well as keeping the surface relatively smooth. In addition, AlN films deposited at 1000   showed the best film quality. GaN films directly grown on Si showed a poor crystalline quality and surface morphology, improvement of quality and morphology was observed for GaN samples deposited on AlN buffer layer. Also, melt-back etching observed on the surface of GaN grown on Si without AlN buffer layer. It is found that duration of Al deposition has a significant effect on GaN surface morphology, Al layer deposition more than 15 s result in a rough surface for GaN films. With choosing the optimum duration of Al pre-deposition and proper growth temperature a good quality GaN with a smooth surface morphology can be produced.
350

Statistical characteristics of two-dimensional and quasigeostrophic turbulence

Vallgren, Andreas January 2010 (has links)
Two codes have been developed and implemented for use on massively parallelsuper computers to simulate two-dimensional and quasigeostrophic turbulence.The codes have been found to scale well with increasing resolution and width ofthe simulations. This has allowed for the highest resolution simulations of two-dimensional and quasigeostrophic turbulence so far reported in the literature.The direct numerical simulations have focused on the statistical characteristicsof turbulent cascades of energy and enstrophy, the role of coherent vorticesand departures from universal scaling laws, theoretized more than 40 yearsago. In particular, the investigations have concerned the enstrophy and energycascade in forced and decaying two-dimensional turbulence. Furthermore, theapplicability of Charney’s hypotheses on quasigeostrophic turbulence has beentested. The results have shed light on the flow evolution at very large Reynoldsnumbers. The most important results are the robustness of the enstrophycascade in forced and decaying two-dimensional turbulence, the unexpecteddependency on an infrared Reynolds number in the spectral scaling of theenergy spectrum in the inverse energy cascade, and the validation of Charney’spredictions on the dynamics of quasigeostrophic turbulence. It has also beenshown that the scaling of the energy spectrum in the enstrophy cascade isinsensitive to intermittency in higher order statistics, but that corrections mightapply to the ”universal” Batchelor-Kraichnan constant.

Page generated in 0.258 seconds