• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A fuel sensitivity study of high speed knock in a two-stroke outboard motor

Zimmer, Michael Thomas. January 1984 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1984. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 110-112).
2

The development of a marketing plan for an outboard engine manufacturer in Hong Kong.

January 1981 (has links)
by Poon Ting-kwun, Wan Hung-koon. / Abstract in Chinese. / Thesis (M.B.A.)--Chinese University of Hong Kong, 1981. / Bibliography: leaves 79-80.
3

Design of a trim- and tilt suspension system for a diesel driven outboard engine / Design av ett trim- och tiltsystem till en dieseldriven utombordsmotor

Jonsson, Alexander January 2013 (has links)
This thesis has been done at the company MarineDiesel Sweden, which is currently developing a diesel-powered outboard engine. The focus of the thesis is to design and size a trim/tilt-suspension unit, which secures the outboard to the boat. This system allows adjustments to be done to the outboard while driving in order to achieve better performance and a smoother ride.The methods used in this thesis are brainstorming/concept generation, concept selection, load analyses, CAD-modeling and FEM-analyses. One concept was chosen to proceed with, and further development was carried out. This involved design loops due to feedback from the company as well as the results from the FEM-analyses.The final result is a complete suspension unit, modeled and calculated strength wise, in order for it to fulfill the demands set on it. Four major parts were investigated using FEM, and analyzed in order to keep the stresses low as well as eliminating unnecessary material and thereby reducing weight. The material selected is aluminum, which is lightweight and possible to cast in order to produce complex geometries.
4

Analysis of the Underwater Emissions From Outboard Engines

Kelly, Charles January 2004 (has links)
The development of Environmentally Adapted Lubricants (EALs) and their use has been gaining momentum over the last decade. It has been shown that raw EALs degrade in the environment in about one tenth the time of an equivalent mineral based lubricant. Estimates and findings such as these serve to highlight the potential benefits of the EAL products, it is also important however to investigate the by-products of their use to ensure that the benefits are not cancelled by an increase of, for instance, combustion by-products. This thesis compares the emissions from a two-stroke outboard engine when using an EAL and an equivalent mineral lubricant, where the primary objective of the study is to characterise and quantify the pollutants that remain within the water column after combustion. To accomplish this, tests were conducted both in the laboratory (freshwater) and in the field (seawater) for a range of throttle settings. A 1.9kW two-stroke outboard engine was set-up in a test tank and water samples were taken from the tank after the engine had been run for a period at each of the throttle settings. The tests were repeated for a 5.9kW four-stroke engine, however, the experiments were only conducted in the laboratory (freshwater) and using only a standard mineral lubricant. Statistical analyses of the results were conducted using a Principal Components Analysis (PCA). A simple dilution model was used to estimate the initial outboard engine emission concentrations, which was extended to determine the concentrations at distances of 1, 10 and 100 metres from the source. An investigation of the Total Toxicity Equivalence of the PAH pollutant concentrations (TEQPAH) was conducted using Toxicity Equivalent Factors (TEFs). Results for both types of engine and in both fresh and seawater showed that even the initial concentrations at the source, in almost all instances, were well below the ANZECC water quality guidelines trigger levels. At a distance of 1 metre from the source all concentrations were well below, and therefore, the Total Toxicity Equivalents of the PAHs were found to be even lower. It is concluded that the emissions from a single outboard engine when using either an EAL or a mineral based lubricant are similar. However, the use of EALs has further reaching advantages in that spilt raw lubricants will degrade in the environment up to 10 times faster than a mineral lubricant. Also EALs are less toxic to aquatic and marine organisms and therefore the benefits of using them has to be viewed from a wider perspective. The results in this thesis for a single outboard engine now form the basis for a more detailed environmental assessment of their impacts.
5

Minimization of Noise and Vibration Related to Driveline Imbalance using Robust Design Processes

Al-Shubailat, Omar 17 August 2013 (has links)
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles to have higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfactions. As a result, original equipment manufacturers (OEMs) have implemented design for variation in the design process to secure an acceptable (or within specification) response. The focus here will be on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance in rotating components can be unavoidable or costly to control. Some of the major components in the vehicle that are known to have imbalance and traditionally cause NVH issues and concerns include the crankshaft, the drivetrain components (transmission, driveline, half shafts, etc.), and wheels. The purpose is to assess NVH as a result of driveline imbalance variations and develop a tool to help design a more robust system to such variations.

Page generated in 0.0263 seconds