• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2036
  • 1029
  • 327
  • 96
  • 95
  • 82
  • 41
  • 33
  • 22
  • 21
  • 16
  • 12
  • 11
  • 10
  • 9
  • Tagged with
  • 4273
  • 3419
  • 1732
  • 1544
  • 397
  • 329
  • 314
  • 290
  • 266
  • 256
  • 245
  • 243
  • 235
  • 230
  • 228
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Mechanisms underlying ozone resistance in Plantago major

Lyons, Thomas Matthew January 1997 (has links)
No description available.
112

A study of the role of phospholipid hydroperoxide glutathione peroxidase activity in humans

Hurst, Rachel January 1999 (has links)
No description available.
113

A comparative study of mixed metal oxide catalysts for the oxidation of C4, C6 and C8 linear alkanes.

Govender, Nishlan. January 2007 (has links)
The Fischer-Tropsch process in South Africa, used for producing chemicals from synthesis gas, which is mostly derived from the gasification of coal, gives a large amount of medium chain length alkanes (C4-C8), which have little commercial value. Internationally, industry has recently placed more focus on the conversion of alkanes to value-added products. Two important routes to achieving this are dehydrogenation and oxidative dehydrogenation. The latter is an economically feasible route, in which there is growing interest by the international research community, and was investigated in this study. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.
114

Etude des systèmes antioxydants dans le métabolisme et la virulence de Salmonella typhimurium / Contribution of antioxidant systems in Salmonella virulence and oxidative stress resistance

Hebrard, Magali 25 February 2010 (has links)
Les Formes Actives de l’Oxygène (FAO), molécules dérivées de l’oxygène, sont capables d’oxyder et d’endommager les macromolécules biologiques. Au cours de son cycle de vie, Salmonella typhimurium est exposée à des FAO provenant de deux sources : soit de son métabolisme aérobie, soit du macrophage, sa cellule hôte au cours de l’infection. Parmi les FAO existantes, l’H2O2 est l’une des plus néfastes. Au cours de ma thèse, j’ai étudié la contribution des catalases et des peroxyrédoxines dans le métabolisme et la virulence de S.typhimurium. Cinq enzymes ont ainsi été identifiées pour leur capacité à éliminer l’H2O2 : les catalases KatG, KatE, KatN et les peroxyrédoxines AhpCF et TsaA. Des tests de virulence ont également permis de montrer que ces enzymes participaient à l’établissement de la virulence.A l’aide d’une sonde moléculaire capable de détecter et de signaler l’H2O2, nous avons montré que S. typhimurium percevait cette FAO au cours de l’infection dans des macrophages murins. Ces résultats ont souligné l’importance des catalases et des peroxyrédoxines au cours de la vie intracellulaire de S. typhimurium. L’analyse du mutant DahpCF DtsaA Dtpx a également révélé que les peroxyrédoxines AhpCF, TsaA et Tpx contribuaient à la capacité de prolifération de la bactérie dans le macrophage. Enfin, l’étude des méthionine sulfoxyderéductases a montré que les caractéristiques d’un mutant DmsrA DmsrB étaient proches de celles de la souche sauvage. Les gènes msrA et msrB ont également été inactivés dans une souche dépourvue de katG, katE et ahpCF. Dans cette souche accumulant de l’H2O2endogène, la contribution de MsrA et MsrB devient évidente pour lutter contre les effets liés au stress oxydant. L’ensemble de ces travaux a permis d’identifier et de caractériser l’implication de systèmes antioxydants dans la virulence et le métabolisme de S. typhimurium. / Reactive Oxygen Species (ROS), produced from molecular oxygen, can oxidize and damagebiological macromolecules. During its lifestyle, Salmonella typhimurium is submitted to ROScoming from two sources: its aerobic metabolism and its host cell upon infection, themacrophage. Among the ROS, H2O2 is one of the most toxic. In this work, the contribution ofcatalases and peroxiredoxins in the metabolism and the virulence of S. typhimurium wasstudied. Five enzymes are implied in H2O2 degradation, the catalases KatG, KatE, KatN andthe peroxiredoxins, AhpCF and TsaA. Virulence tests showed that these enzymes wereinvolved in virulence. Using a molecular probe able to detect and quantify H2O2, we showedthat S. typhimurium sensed H2O2 during infection in murine macrophages. These resultsunderlined the importance of catalases and peroxoxyredoxines for the intracellular life of S.typhimurium. Analysis of the mutant DahpCF DtsaA Dtpx revealed that the peroxiredoxinsAhpCF, TsaA and Tpx contributed to the bacterial proliferation inside macrophage. Finally,the study of the methionine sulfoxyde reductases showed that the phenotype of the mutantDmsrA DmsrB was related to the wild type strain. Then, msrA and msrB were inactivated in astrain deleted of katG, katE and ahpCF. In this strain impaired in H2O2 degradation, thecontribution of MsrA and MsrB to fight against oxidative stress effect is stronger. Altogether,these results allowed the identification and the contribution of antioxidant systems in S.typhimurium virulence and metabolism.
115

Base Excision Repair in Chromatin

Prasad, Amalthiya 08 October 2008 (has links)
ABSTRACT DNA in the eukaryotic nucleus is complexed with histone and non-histone proteins into chromatin. Nucleosomes, the basic repeating unit of chromatin, not only package DNA but are also intimately involved the regulation of gene expression. All DNA transactions including replication, transcription, recombination and repair take place in such a chromatin environment. Access to packaged nucleosomal DNA in vivo is mediated at least in part by protein complexes that modify or remodel chromatin. Buried sequences in nucleosomes can also transiently become accessible to DNA binding proteins during cycles of partial, reversible unwrapping of nucleosomal DNA from the histone octamer. We have investigated the ability of the human, bifunctional DNA glycosylase, endonuclease III (hNTH1), to initiate base excision repair (BER) of discretely positioned oxidative lesions in model nucleosomes. hNTH1 was able to process a thymine glycol (Tg) lesion almost as efficiently as naked DNA, when the minor groove of the lesion faced away from the histone octamer. Lesion processing did not require or result in detectable nucleosome disruption, as assayed in gel mobility-shift experiments. Instead, hNTH1 formed a slower migrating enzyme-nucleosome ternary complex that was found to contain processed DNA. Processing of an inward-facing Tg residue located just 5 bp away from the outward-facing lesion was much reduced and processing of a sterically occluded Tg residue positioned closer to the dyad center of the nucleosome was even more reduced. Notably, processing of both inward-facing lesions was found to increase as a function of enzyme concentration. Restriction enzyme protection studies indicated that access to these inward-facing lesions did not entail nucleosomal translocation or sliding. Collectively, these observations are consistent with a model in which hNTH1 binds to lesions during cycles of reversible, partial unwrapping of nucleosomal DNA from the histone octamer core. To further investigate this partial unwrapping hypothesis, we studied the kinetics of hNTH1 processing of sterically occluded lesions in greater detail. Our results suggest that efficiency of processing of inward-facing lesions is a function of both DNA unwrapping and rewrapping rates, and enzyme affinity for the lesion. In addition, we determined that APE1 which catalyzes the second step in BER, exhibited an increasing capacity to process inward-facing furan residues as its concentration was increased. Thus as with hNTH1, we hypothesize that APE1 can capture occluded furan residues during cycles of partial DNA unwrapping. We propose that cellular regulatory factors benefit from this intrinsic, periodic exposure of nucleosomal DNA exposure in vivo, which may be amplified by the downstream recruitment of remodeling and / or modifying proteins to facilitate DNA transactions in the cell.
116

Development of Stimulus-Responsive Ligands for the Modulation of Copper and Iron Coordination

Franks, Andrew Thomas January 2014 (has links)
<p>The ability to manipulate the coordination chemistry of metal ions has significant ramifications for the study and treatment of metal-related health concerns, including iron overload, UV skin damage, and microbial infection among many other conditions. To address this concern, chelating agents that change their metal binding characteristics in response to external stimuli have been synthesized and characterized by several spectroscopic and chromatographic analytical methods. The primary stimuli of interest for this work are light and hydrogen peroxide.</p><p>Herein we report the previously unrecognized photochemistry of aroylhydrazone metal chelator ((E)-N&#8242;-[1-(2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide) (HAPI) and its relation to HAPI metal binding properties. Based on promising initial results, a series of HAPI analogues was prepared to probe the structure-function relationships of aroylhydrazone photochemistry. These efforts elucidate the tunable nature of several aroylhydrazone photoswitching properties.</p><p>Ongoing efforts in this laboratory seek to develop compounds called prochelators that exhibit a switch from low to high metal binding affinity upon activation by a stimulus of interest. In this context, we present new strategies to install multiple desired functions into a single structure. The prochelator 2-((E)-1-(2-isonicotinoylhydrazono)ethyl)phenyl (E)-3-(2,4-dihydroxyphenyl)acrylate (PC-HAPI) is masked with a photolabile trans-cinnamic acid protecting group that releases umbelliferone, a UV-absorbing, antioxidant coumarin along with a chelating agent upon UV irradiation. In addition to the antioxidant effects of the coumarin, the released chelator (HAPI) inhibits metal-catalyzed production of damaging reactive oxygen species. Finally a peroxide-sensitive prochelator quinolin-8-yl (Z)-3-(4-hydroxy-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)acrylate (BCQ) has been prepared using a novel synthetic route for functionalized cis-cinnamate esters. BCQ uses a novel masking strategy to trigger a 90-fold increase in fluorescence emission, along with the release of a desired chelator, in the presence of hydrogen peroxide.</p> / Dissertation
117

Biochemical and structural alterations induced by selenium under cadmium stress in tomato plants /

Alves, Leticia Rodrigues. January 2019 (has links)
Orientador: Priscila Lupino Gratão / Resumo: As plantas estão expostas a adversidades no ambiente que as circundam, como a contaminação por cádmio (Cd). Este metal pesado tem aumentado na atmosfera devido a atividades humanas. As plantas podem absorver o Cd, causando sérias alterações estruturais, fisiológicas e bioquímicas. As plantas desenvolveram sistemas de defesa complexos, incluindo mecanismos não enzimáticos e enzimáticos para evitar uma cascata de oxidação descontrolada causada pelo estresse oxidativo. Alguns elementos, como o selênio (Se), se utilizados em concentração adequadas, podem induzir uma melhora no sistema antioxidante, no crescimento e nos atributos fotossintéticos. Ainda é pouco conhecido o papel do Se nas respostas das plantas ao estresse. O objetivo deste trabalho foi obter novas informações sobre o papel do selenato e selenito no sistema de desintoxicação das plantas, incluindo a avaliação da nutrição mineral, atividade de enzimas antioxidantes e conteúdo de compostos não enzimáticos, pigmentos, alterações estruturais e o papel do Se na modulação do etileno, com o uso de mutantes hormonais como ferramenta. Nossos dados indicam que o Se é uma estratégia interessante para melhorar o metabolismo da planta sob condições normais ou estressantes. O selênio pode induzir aumento da ação do metabolismo de defesa antioxidante, provavelmente devido a alterações na sinalização do etileno. Além disso, em condições normais, o Se induz alterações estruturais nas células, o que pode contribuir para o desenvolvim... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Cadmium (Cd) contamination is a worldwide concern and one of the most severe causes of abiotic stress in plants, triggering losses in crop production and contamination risks to human health. This heavy metal increased in atmosphere due to human activities. Plants can uptake Cd, causing serious changes in structural, physiological and biochemical processes. Plants developed a complex defence systems including non-enzymatic and enzymatic mechanism to avoid oxidative stress and prevent an uncontrolled oxidation cascade. Some elements, such as selenium (Se), if used in adequate concentration, may induce an improvement in antioxidant system, growth and photosynthetic attributes. It is still unknown the mechanisms of Se in stress responses. The aim of this work was get new insights about the role of selenate and selenite-mediated detoxification strategies, including the evaluation of mineral nutrition, the activity of antioxidant enzymes and non enzymatic compounds, pigments, structural alterations and the role of Se in modulate ethylene, with the use of hormonal mutants as a tool. Our data indicates that Se is an interesting strategy to improve plant metabolism under normal or Cd stressful-condition. Selenium may induce enhancement in antioxidant defence metabolism, probably due to alterations in ethylene signalling. Moreover, under normal condition Se induce structural alterations in cells, which may contribute to plant development. Thus, the information available in this work is... (Complete abstract click electronic access below) / Doutor
118

Role and Regulation of Methionine Sulfoxide Reductase (Msr) in a model of oxidative stress tolerance: Trachemys scripta

Unknown Date (has links)
The detrimental effects of oxidative stress caused by the accumulation of Reactive Oxygen Species (ROS) have been acknowledged as major factors in aging, senescence and several neurodegenerative diseases and conditions such as Parkinson’s disease and stroke (ischemia/reperfusion). Mammalian models are extremely susceptible to these stresses that follow the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand several bouts of anoxia and repeated reoxygenation without any apparent pathology. T. scripta thus provides us with an alternate vertebrate model in which we can investigate physiological mechanisms of neuroprotection without the damaging effects that come with oxidative stress. The major objective of this study was to investigate the protective mechanisms in the turtle brain under conditions of anoxia and oxidative stress. Specifically, the focus is on the Methionine Sulfoxide Reductase system (Msr), an antioxidant and cellular repair system, and how it is regulated to protect the brain against such stressors. Previous studies in my lab have demonstrated that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation. To investigate the regulation of Msr, FOXO3a was directly induced by transfecting a human FOXO3a plasmid into turtle brain cell cultures, as FOXO3a has been shown to regulate MsrA levels in other animal models. Pharmacological manipulation of FOXO3a was also performed using the green tea extract Epigallocatechin gallate (EGCG) as it has been shown to increase expression of FOXO3a during oxidative stress conditions in other models. I found that an induction of human FOXO3a increased FOXO3a levels and showed protection against cell death during oxidative stress. Furthermore, treatment of cells with EGCG increased expression of FOXO3a only when the cells were exposed to oxidative stress and decreased cell death. Induction of FOXO3a and EGCG treatment did not increase MsrA levels, however MsrB3 levels were upregulated under both treatments but only in the presence of oxidative stress. These results suggest that MsrA and MsrB3 protect the cells from oxidative stress damage through different molecular pathways and that EGCG may be a therapeutic target to treat diseases related to damage by oxidative stress. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
119

Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster

Unknown Date (has links)
The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
120

A Study on the Potential Role of Stress Granules and Processing Bodies in Eliminating Oxidatively Damaged RNA

Unknown Date (has links)
Oxidative stress (OS) is strongly implicated in age-related neurodegeneration and other diseases. Under OS, the production of excessive oxidants leads to increased damages to cellular components. Recently, RNA has been discovered as a major target of oxidative damage, including the creation of abasic sites. In this work, we developed a method for quantifying abasic RNA in cell. Using this method, we have examined the potential role of the RNA-processing cellular foci, stress granule (SG) and processing bodies (PB) in eliminating abasic RNA in situ. We demonstrated that RNA is a major target of oxidative damage, constituting the majority of OS-induced abasic nucleic acids in HeLa cell. Importantly, the level of abasic RNA is strongly correlated with SG abundance. Furthermore, inhibition of SG/PB formation causes accumulation of abasic RNA, suggesting that SG/PB participates in removing oxidized RNA and protects cells under OS, which offers novel targets for therapeutic intervention in age-related diseases. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0533 seconds