Spelling suggestions: "subject:"pgp,"" "subject:"ppgp,""
21 |
Flödescytometrisk sortering av cellpopulationer med olika cytostatikakänslighet : metodutvärdering på leukemi- och brösttumörcellerAxelsson, Susanne January 2008 (has links)
Flödescytometrisk cellsortering möjliggör att ur ett större cellmaterial separera en subpopulation celler för vidare analyser. Uppkomst av cytostatikaresistens beror på olika faktorer men där överuttryck av P-gp spelar stor roll. P-gp transporterar aktivt ut cytostatika ur cellen. I studier på AML-celler har man flödescytometriskt påvisat att JC-1 ackumulering speglar P-gp aktivitet. Därmed kan cytostatikaresistenta celler identifieras och sorteras. Bröstcancer är den svenska kvinnans vanligaste cancerform där cytostatika ofta ingår i den postoperativa behandlingen. Trots att många patienter svarar på första behandlingen drabbas många ändå av återfall. Problematik med cytostatikaresistens är då vanligt förekommande. Syftet med denna studie var att sätta upp en metod för att flödescytometrisk cellsortera avseende olika JC-1 ackumulering och därmed olika cytostatikakänslighet. I studien användes färskt brösttumörmaterial och två subcellinjer av leukemicellinjen HL-60. HL-60 S som är känslig för cytostatika och HL-60 R5 som är resistent vid odling med 5 µM doxorubicin. Resultaten visade att starkare fluorescensintensitet erhölls vid inkubation och förvaring i JC-1 jämfört med att efter JC-1 inkubation förvara cellerna i D-PBS. Det var möjligt att inkubera ett större antal celler med JC-1 i cellodlingsflaska. Resultaten visar dock att flödescytometrisk sortering kraftigt påverkade viabiliteten hos HL-60 S + R5 där endast två tredjedelar av cellerna var viabla efter sorteringen. Preparering av brösttumörmaterial med Medicon medförde att en betydande andel celler dog och materialet i studien var inte tillräckligt för cellsortering. Att cellsortera kräver kunskap och erfarenhet och det är av vikt att prepareringsmetoden och sorteringsinställningarna optimeras på det material som ska användas i studien.
|
22 |
The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human PlacentaRainey, Jenna January 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
|
23 |
Designing Chemical Strategies to Promote Therapeutic Access to Restricted Sites In CytoJennifer L Rowe (8052164) 28 November 2019 (has links)
Therapeutically restricted sites present a formidable barrier in medicine. Herein, chemical strategies to overcome two restricted sites, HIV reservoirs and intracellular bacteria, will be discussed. First, cellular and anatomical HIV reservoirs, such as those in the brain, limit HIV eradication using currently known therapeutic regimes. HIV therapies are unable to localize in the brain, in part, due to high expression of efflux transporters, such as P-glycoprotein (P-gp), at the BBB, because many of these therapies are P-gp substrates. In an effort to overcome therapeutically restricted HIV sanctuaries, a dimerized combination HIV therapy was designed to act two-fold. First, the dimeracts as a P-gp inhibitor allowing therapeutic access to restricted sites. Second, the dimeractsas a prodrug, which once in the reducing environment of the cell, may release monomeric HIV therapies. The dual conjugate, Abacavir-S2-Darunavir, was shown to potently inhibit P-gp across two separate cell lines, was able to regenerate the component monomers in a reducing environment and contained modest anti-HIV activity.<div><br><div>Further, mammalian cells create sanctuary sites for bacteria to grow and proliferate, because many common antibiotic therapies are unable to cross the mammalian cell membrane. Therefore, these pathogens are able to proliferate without therapeutic constraint. Here, a chemical strategy was developed to deliver a dual antibiotic therapy inside mammalian cells in an effort to clear these intracellular pathogens. First, a new synthetic strategy was developed for facile synthesis of dual conjugates, composedof an aminoglycoside and a cell penetrating peptide (CPP) linked with a reversible disulfide tether, using kanamycin and the known CPP Arg8as a model system. Next, this synthetic methodology was expanded for use with theaminoglycoside tobramycin and theknown broad-spectrum antibiotic and cell penetrating peptide, P14LRR, once again linked via the reversible disulfide tether (TobP14). Two distinct isomers of TobP14 were synthesized, isolated, and fully characterized by 2D NMR. The TobP14 isomers were shown to be an effective antibiotic across various Gram positive and negative pathogens such as MRSA, S. epidermidis, P. aeruginosa, and A. baumannii. Further, the isomers effectively releasedthe monomeric therapies (tobramycin and P14-SH) in a reducing environment and werenontoxic to mammalian cells up to 16 μM. Finally, the dual conjugate isomers significantly reduce two different strains of intracellular A. baumanniiwithin macrophages.<br><div><br></div><div><br></div></div></div>
|
24 |
Effects of plant extracts and phytoconstituents on the intestinal transport of indinavir / K.H. Roos.Roos, Karin Hester January 2012 (has links)
There is a global rise in the use of herbal products in combination with allopathic medicines, while most patients do not inform their health care providers of the use of these natural products. Both pharmacodynamic and pharmacokinetic interactions between herbal products and conventional drugs must be avoided for the wellbeing of the patient. Increasing evidence from in vitro and in vivo studies indicate that changed drug pharmacokinetics by co-administered herbs may be attributed to modulation of efflux drug transporters such as P-glycoprotein (P-gp). Garlic (Allium sativum), lemon (Citrus limonum) and beetroot (Beta vulgaris) are widely used by human immunodeficiency virus (HIV) patients, especially following the pronouncement by a former President of South Africa and the Ministers of Health at that time who promoted the use of these botanicals in HIV patients.
The aim of this study was to measure the bi-directional in vitro transport of indinavir, a protease inhibitor, in the presence of crude extracts and pure phytoconstituents of A. sativum (L-alliin and diallyl disulphide), C. limonum (hesperidin and eriocitrin) and B. vulgaris (betaine monohydrate and ß-carotene) across excised porcine intestinal tissue in Sweetana-Grass diffusion chambers. In the negative control group, the transport of indinavir alone (200 M) was determined with no modulator added. In the positive control group, the transport of indinavir was determined in the presence of verapamil (100 M), a known P-gp related efflux inhibitor. The control experiments were used to indicate that the effects of the test compounds were caused by their action and not by chance interferences or external factors. Samples collected at pre-determined time intervals were analysed by means of a validated high performance liquid chromatography (HPLC) method and the transport was expressed as the apparent permeability coefficient (Papp) and the transepithelial flux (J) from which the efflux ratio (ER) and the net flux (Jnet) values were calculated. Statistical analysis was used to compare the results of the test compounds with the control groups in order to indicate significant differences.
The mean ER value for indinavir in the negative control group was 1.41 ± 0.170 and in the positive control group it was 0.56 ± 0.0426. Statistically significant (p < 0.05) inhibition of indinavir efflux as indicated by reduced ER values was obtained for L-alliin (ER = 0.280 ± 0.030), diallyl disulphide (ER = 0.505 ± 0.034) and ß-carotene (ER = 0.664 ± 0.075). Inhibition of indinavir efflux will lead to increased transport and therefore a potentially higher bioavailability. Statistically significant (p < 0.05) promotion of indinavir efflux as indicated by increased ER values was obtained for C. limonum crude extract (ER = 5.551 ± 0.575) and hesperidin (ER = 3.385 ± 0.477), which potentially may lead to lower bioavalability. B. vulgaris crude extract (p = 0.8452), betaine monohydrate (p = 0.9982), A. sativum crude extract (p = 0.7161) and eriocitrin (p = 0.4431) displayed no statistically significant effect compared to the negative control group on indinavir transport across excised porcine intestinal tissue.
The results from this study demonstrate that L-alliin, diallyl disulphide and ß-carotene have an inhibitory effect on indinavir efflux, which may significantly increase indinavir plasma levels after oral administration. C. limonum crude extract and hesperidin promote indinavir efflux, which may significantly reduce indinavir plasma levels. These pharmacokinetic interactions between certain drugs and plant extracts may negatively affect the anti-retroviral treatment of HIV patients, but deliberate and controlled inclusion of L-alliin, diallyl disulphide and ß-carotene in dosage forms may possibly cause more effective delivery of protease inhibitors after oral administration resulting in less frequent dosing intervals. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
25 |
Effects of plant extracts and phytoconstituents on the intestinal transport of indinavir / K.H. Roos.Roos, Karin Hester January 2012 (has links)
There is a global rise in the use of herbal products in combination with allopathic medicines, while most patients do not inform their health care providers of the use of these natural products. Both pharmacodynamic and pharmacokinetic interactions between herbal products and conventional drugs must be avoided for the wellbeing of the patient. Increasing evidence from in vitro and in vivo studies indicate that changed drug pharmacokinetics by co-administered herbs may be attributed to modulation of efflux drug transporters such as P-glycoprotein (P-gp). Garlic (Allium sativum), lemon (Citrus limonum) and beetroot (Beta vulgaris) are widely used by human immunodeficiency virus (HIV) patients, especially following the pronouncement by a former President of South Africa and the Ministers of Health at that time who promoted the use of these botanicals in HIV patients.
The aim of this study was to measure the bi-directional in vitro transport of indinavir, a protease inhibitor, in the presence of crude extracts and pure phytoconstituents of A. sativum (L-alliin and diallyl disulphide), C. limonum (hesperidin and eriocitrin) and B. vulgaris (betaine monohydrate and ß-carotene) across excised porcine intestinal tissue in Sweetana-Grass diffusion chambers. In the negative control group, the transport of indinavir alone (200 M) was determined with no modulator added. In the positive control group, the transport of indinavir was determined in the presence of verapamil (100 M), a known P-gp related efflux inhibitor. The control experiments were used to indicate that the effects of the test compounds were caused by their action and not by chance interferences or external factors. Samples collected at pre-determined time intervals were analysed by means of a validated high performance liquid chromatography (HPLC) method and the transport was expressed as the apparent permeability coefficient (Papp) and the transepithelial flux (J) from which the efflux ratio (ER) and the net flux (Jnet) values were calculated. Statistical analysis was used to compare the results of the test compounds with the control groups in order to indicate significant differences.
The mean ER value for indinavir in the negative control group was 1.41 ± 0.170 and in the positive control group it was 0.56 ± 0.0426. Statistically significant (p < 0.05) inhibition of indinavir efflux as indicated by reduced ER values was obtained for L-alliin (ER = 0.280 ± 0.030), diallyl disulphide (ER = 0.505 ± 0.034) and ß-carotene (ER = 0.664 ± 0.075). Inhibition of indinavir efflux will lead to increased transport and therefore a potentially higher bioavailability. Statistically significant (p < 0.05) promotion of indinavir efflux as indicated by increased ER values was obtained for C. limonum crude extract (ER = 5.551 ± 0.575) and hesperidin (ER = 3.385 ± 0.477), which potentially may lead to lower bioavalability. B. vulgaris crude extract (p = 0.8452), betaine monohydrate (p = 0.9982), A. sativum crude extract (p = 0.7161) and eriocitrin (p = 0.4431) displayed no statistically significant effect compared to the negative control group on indinavir transport across excised porcine intestinal tissue.
The results from this study demonstrate that L-alliin, diallyl disulphide and ß-carotene have an inhibitory effect on indinavir efflux, which may significantly increase indinavir plasma levels after oral administration. C. limonum crude extract and hesperidin promote indinavir efflux, which may significantly reduce indinavir plasma levels. These pharmacokinetic interactions between certain drugs and plant extracts may negatively affect the anti-retroviral treatment of HIV patients, but deliberate and controlled inclusion of L-alliin, diallyl disulphide and ß-carotene in dosage forms may possibly cause more effective delivery of protease inhibitors after oral administration resulting in less frequent dosing intervals. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
26 |
Pharmacologie de la morphine chez les sujets obèses avant et après chirurgie de l'obésité / Pharmacology of morphine in obese subjects before and after obesity surgeryLloret Linares, Célia 19 April 2013 (has links)
Au cours de cette thèse, nous montrons que l’obésité est un facteur de variabilité pharmacodynamique et pharmacocinétique de la morphine. En particulier, l’absorption et l’exposition à la morphine orale augmentent de façon significative après chirurgie de type bypass gastrique. Nous démontrons le rôle du contenu entérocytaire en transporteur d’efflux P-gp, dans la détermination de l’absorption et de l’exposition à la morphine. / In this thesis, we show that obesity is a factor of pharmacodynamic and pharmacokinetic morphine variability. In particular, absorption and exposure to oral morphine increases significantly after gastric bypass surgery . We demonstrate the role of enterocyte content of efflux transporter P-gp in determining the absorption and exposure to morphine.
|
27 |
The role of NQO2 in tumour growth and response to therapeutic drugsIkhmais, Balqis January 2018 (has links)
NRH quinone oxidoreductase 2 (NQO2) is regarded as a mammalian Phase I detoxifying enzyme responsible for reducing quinones to hydroquinones. NQO2 is highly expressed in different types of cancer such as breast and prostate cancer suggesting its participatory role in the progression of these diseases. A potential reason for this is that NQO2 has the ability to modulate the stability of cyclin D1 and activity of NF-ÃÂoB and it has been shown that inhibition of NQO2, either genetically or pharmacologically, can alter the pattern of proliferation of cancer cells. However, the biological roles of NQO2 in cancer progression are still ambiguous and need further investigation. A panel of seven ovarian cancer cell lines (OVCs) were screened for the presence and functionality of NQO2. SKOV-3 and TOV-112D cells expressing comparatively the highest and lowest levels of NQO2 were stably transduced to silence and overexpress NQO2 respectively. Pharmacological inhibition was achieved using resveratrol or a series of novel 4-aminoquinolines synthesised in-house. Cell proliferation was monitored by cell counting and clonogenic assays. Flow cytometric analysis was used to determine cell cycle distribution and levels of ROS following modulation of NQO2 function. The expression of cell cycle regulatory markers was determined by Western blot. The contributory roles of NQO2 in determining the cytotoxicity of Adriamycin (ADR) towards OVCs was investigated using MTT assay together with evaluation of P-gp expression and basal ROS levels. In the OVCs panel, NQO2 protein levels and enzymatic activity showed an excellent correlation; with activity varying 36-fold between the cell lines. The sensitivity of OVCs to CB1954 was significantly increased when combined with the NRH-like co-factor, EP0152R. This supports the notion that NQO2 mediates the toxicity of CB1954, which is further confirmed by the strong correlation between cellular NQO2 activity and the responsiveness of the OVC cell lines to CB1954. Hydrazone quinolines showed the highest inhibitiory potency against NQO2 in SKOV-3 when compared to the typical and in-house synthesised quinolines inhibitors. NQO2-overexpressing TOV-112D cells showed more aggressive growth pattern and higher capacity to form colonies than wild-type cells. This was consistently associated with an enhancement in the progression of cells through cell cycle phases and significant reduction in Rb expression. A reduction in ROS levels in NQO2-OE cells may also explain this enhancement in cell growth. Overexpressing NQO2 also resulted in destabilisation of CDK4 and cyclin D1 with significant reduction in their expression levels, and concomitant increase in p-cyclin D1 (Thr286). The involvement of NQO2 in controlling cyclin D1 turnover is also confirmed in SKOV-3 cells when genetic silencing of NQO2 was accompanied by significant reduction in p-cyclin D1 and subsequent stabilisation of cyclin D1 levels. In spite of this, no alterations in the growth pattern of SKOV-3 cells were observed highlighting the impact of cell type on the variations in cellular responses. The role of NQO2 in determining the toxicity of ADR treatment was not proved in OVC cells. This was despite that modulation of NQO2 levels caused significant changes in P-gp expression. The intracellular basal levels of ROS was found to affect the responsiveness of OVCs to ADR as demonstrated when treating SKOV-3 with resveratrol was accompanied by significant increase in ROS levels and concomitant enhancement in the cellsâ response to ADR. In conclusion, NQO2 can profoundly alter the proliferation characteristics of OVCs and is a potential therapeutic target for the treatment of this disease. However, the biological functions of NQO2 and its contributory roles in particular pathways are varied among different types of cancer -in other words- are highly dependent on cancer type.
|
28 |
Etude comparative des thérapies anti-VIH : rôle des transporteurs d'efflux sur le passage transmembranaire des antirétroviraux au niveau des cellules CD4+ et de la barrière hémato-encéphalique.Bousquet, Laurence 05 September 2008 (has links) (PDF)
Les inhibiteurs de la protéase (PI) du virus de l'immunodéficience humain (VIH) doivent, pour être actifs, pénétrer à l'intérieur des cellules cibles du VIH, comme les lymphocytes et être présents à des concentrations suffisantes au niveau de la protéase virale.<br /> <br />Certaines protéines d'efflux pourraient diminuer les concentrations intracellulaires d'IP. Ce travail étudie la pharmacocinétique intracellulaire des IP et leurs mécanismes de transfert à travers la membrane cellulaire à l'aide de modèles cellulaires.<br /> <br />Les IP pénètrent dans la cellule par diffusion passive et s'accumulent par fixation aux protéines cytosoliques.<br />Nous avons également étudié l'expression de la P-glycoprotéine à l'aide de cellules mononucléées du sang périphérique de patients infectés par le VIH et traités par des multithérapies antivirales à base d'IP.
|
29 |
Qualitative and Quantitative Assessment of Cytochromes P450 mRNA in Human : Studies in the Liver, Blood and Gastrointestinal MucosaThörn, Mari January 2005 (has links)
<p>Drugs and other foreign compounds must often be metabolised before they can be excreted from the body. One enzyme system that is responsible for this is the cytochrome P450 gene family (CYP). In this thesis, new sensitive molecular techniques have been used to study the human gene expression of some CYP enzymes, as well as the P-glycoprotein transporter (P-gp). The aim was to evaluate whether tissues other than the liver, e.g. the blood, could be used to assess an individual's drug metabolic capacity. Another aim was to investigate the gene expression in relation to the liver transplant process and a third aim was to evaluate the expression in gastrointestinal mucosa in both normal and inflamed mucosa.</p><p>We evaluated the CYP gene expression in paired specimens of liver and blood but found no correlation in the expression patterns of these two tissues. Instead, we found the opposite pattern, where, for example, CYP1B1 had the highest expression in the blood but the lowest in the liver and CYP2E1 was the enzyme with the highest expression in the liver. In an investigation of the expression of four different CYP enzymes and P-gp in liver transplants before and during the first year after transplantation, we found that the levels of all the CYP enzymes but not P-gp increased with time. We also found that the expression of CYP3A4 was inversely related to the normalised plasma levels of the immunosuppressive drugs cyclosporine and tacrolimus.</p><p>In the gastrointestinal tract, CYP2E1 was the enzyme with the highest mRNA expression compared with CYP3A4, CYP3A5 and the transporter P-gp. CYP3A4 has its highest expression in the duodenum compared with the expression in the stomach and the colon. CYP3A5 is expressed at a higher level than CYP3A4 in the colon. P-gp expression levels increase through the gastrointestinal tract to the left colon. Gene expression levels of CYP2E1 and CYP3A4 decrease in severely inflamed rectal mucosa. </p><p>In conclusion, this is a sensitive method for studying gene activity in a clinical situation, even though at this point we are not able to use blood or gastrointestinal mucosa as “surrogate” tissue to estimate an individual’s drug metabolic capacity. The studies in liver transplants and gastrointestinal mucosa are unique in that the gene expression is investigated during a clinical course of events.</p>
|
30 |
Qualitative and Quantitative Assessment of Cytochromes P450 mRNA in Human : Studies in the Liver, Blood and Gastrointestinal MucosaThörn, Mari January 2005 (has links)
Drugs and other foreign compounds must often be metabolised before they can be excreted from the body. One enzyme system that is responsible for this is the cytochrome P450 gene family (CYP). In this thesis, new sensitive molecular techniques have been used to study the human gene expression of some CYP enzymes, as well as the P-glycoprotein transporter (P-gp). The aim was to evaluate whether tissues other than the liver, e.g. the blood, could be used to assess an individual's drug metabolic capacity. Another aim was to investigate the gene expression in relation to the liver transplant process and a third aim was to evaluate the expression in gastrointestinal mucosa in both normal and inflamed mucosa. We evaluated the CYP gene expression in paired specimens of liver and blood but found no correlation in the expression patterns of these two tissues. Instead, we found the opposite pattern, where, for example, CYP1B1 had the highest expression in the blood but the lowest in the liver and CYP2E1 was the enzyme with the highest expression in the liver. In an investigation of the expression of four different CYP enzymes and P-gp in liver transplants before and during the first year after transplantation, we found that the levels of all the CYP enzymes but not P-gp increased with time. We also found that the expression of CYP3A4 was inversely related to the normalised plasma levels of the immunosuppressive drugs cyclosporine and tacrolimus. In the gastrointestinal tract, CYP2E1 was the enzyme with the highest mRNA expression compared with CYP3A4, CYP3A5 and the transporter P-gp. CYP3A4 has its highest expression in the duodenum compared with the expression in the stomach and the colon. CYP3A5 is expressed at a higher level than CYP3A4 in the colon. P-gp expression levels increase through the gastrointestinal tract to the left colon. Gene expression levels of CYP2E1 and CYP3A4 decrease in severely inflamed rectal mucosa. In conclusion, this is a sensitive method for studying gene activity in a clinical situation, even though at this point we are not able to use blood or gastrointestinal mucosa as “surrogate” tissue to estimate an individual’s drug metabolic capacity. The studies in liver transplants and gastrointestinal mucosa are unique in that the gene expression is investigated during a clinical course of events.
|
Page generated in 0.0542 seconds