• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Who should decide, and about what? : Reflections on reprogenetic choices and the scope of parental autonomy / Vem skall bestämma, och om vad? : Reflektioner kring reprogenetiska val och omfattningen av föräldrars autonomi

Nordell, Madeleine January 2004 (has links)
<p>In this thesis the scope and limits of reprogenetic choices - refering to reproductive applications of genetics made in the medical context - is adressed.</p><p>Through posing four analytical questions concerning who should cecide about what in reprogenetics an analysis of possible answers is made. The method consists of an analysis of texts of ethicists Robertson, Strong, Davis, Murray, Peters and Buchanan et al, chosen to reflect a diversity concerning the scope of reproductive autonomy and what values that need to be taken into consideration.</p><p>The most justified position found, concerning a possible policy of reprogenetic choices, is that there are several good reasons for leaving the reprogenetic choices with the parents, foremost since reproduction indeed is central to individuals identity, dignity and meaning of life. There are also good reasons to avoid governmental steering. This for instance since steering risks promoting perfectibilism, which would threaten human dignity. But also the reprogenetic choices cannot be left unrestricted. It is then argued that restrictions of parental reproductive autonomy should serve to protect the childs right to an open future, and that choices that reflect a search for perfectibilism should be cautioned. Autonomous reprogenetic choices should mean qualified choices - where relevant information is given and also an opportunity to make more than one choice is fostered.</p>
22

Who should decide, and about what? : Reflections on reprogenetic choices and the scope of parental autonomy / Vem skall bestämma, och om vad? : Reflektioner kring reprogenetiska val och omfattningen av föräldrars autonomi

Nordell, Madeleine January 2004 (has links)
In this thesis the scope and limits of reprogenetic choices - refering to reproductive applications of genetics made in the medical context - is adressed. Through posing four analytical questions concerning who should cecide about what in reprogenetics an analysis of possible answers is made. The method consists of an analysis of texts of ethicists Robertson, Strong, Davis, Murray, Peters and Buchanan et al, chosen to reflect a diversity concerning the scope of reproductive autonomy and what values that need to be taken into consideration. The most justified position found, concerning a possible policy of reprogenetic choices, is that there are several good reasons for leaving the reprogenetic choices with the parents, foremost since reproduction indeed is central to individuals identity, dignity and meaning of life. There are also good reasons to avoid governmental steering. This for instance since steering risks promoting perfectibilism, which would threaten human dignity. But also the reprogenetic choices cannot be left unrestricted. It is then argued that restrictions of parental reproductive autonomy should serve to protect the childs right to an open future, and that choices that reflect a search for perfectibilism should be cautioned. Autonomous reprogenetic choices should mean qualified choices - where relevant information is given and also an opportunity to make more than one choice is fostered.
23

Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition)

Lázaro García, Juan 21 March 2016 (has links)
[EN] Thesis exposition and summary. This thesis focuses on giving light to the current state of traditional numerical methods, the constraints we face, and the different solutions that are being proposed for the simulation of the electromagnetic behaviour of different materials as electrical conductors in transmission lines and grounding facilities, based on the formulation that defines the Electromagnetic Field Theory (Maxwell Laws), and the different conditions of each particular problem to solve. The main aim of the thesis is to investigate the application of numerical techniques very recently applied, known as the Proper Generalized Decomposition (PGD). Based on a novel technique of decomposition of multidimensional variables (such as in electromagnetic field) in a sum of products (modes) of one-dimensional variables, and using iterative algorithms, PGD can address with a reduced need for computational media, complex problems whose solution requires extraordinary means using traditional techniques. These new techniques have been successfully applied in other domains, such as the simulation of mechanical components and materials science. The aim of this thesis is the application of these new techniques to the simulation of electromagnetic phenomena in the different elements designed for the use of electricity. The thesis focuses on the development of modelling power transmission conductor energy and grounding networks, basic structures in electrical technology but serve to analyze and observe in detail, as well as to validate with traditional methods of proven reliability, the great potential of PGD, leaving open the application of the technique to technically complex as transformers and rotating machines in future works of the Electrical Equipment, Systems and Facilities Research Group (ISEE) of the Polytechnic University of Valencia (UPV). The main novelties of the thesis on previous work are part of the objectives, and are as follows: -Optimization on PGD technique. In this thesis has been chosen by an application of PGD with maximum decomposition in elementary functions, i.e., modes will be considered consisting of products of functions exclusively one-dimensional (x, y, z, t, frequency, etc.), then discretized with uniform dimensional meshes. This will lead us to obtain simple codes, which require easy deployment and reduced computational resources. -Applications of PGD to electromagnetism field, since the vast majority of references that can be found in the application of PGD concern the field of mechanics and materials. This work aims to use advances made in these fields, and apply to the field of electromagnetism, where only very few works have been published in recent years, with the aim of contributing to further open a new front in the development and application of technology that allows to overcome the limitations and problems that far presented with traditional techniques resolution. / [ES] Planteamiento y resumen de la tesis doctoral. La presente tesis se centra en dar luz al estado actual de los métodos numéricos tradicionales, las limitaciones a las que nos enfrentamos, y las diferentes soluciones que se están planteando para la simulación del comportamiento electromagnético de diferentes materiales como conductores eléctricos en líneas de transmisión e instalaciones de puesta a tierra, basándose en la formulación que define la Teoría de Campos Electromagnéticos (Leyes de Maxwell), y las diferentes condiciones de cada problema particular a resolver. El objetivo principal de la tesis es el investigar la aplicación de técnicas numéricas de muy reciente aplicación, conocidas como la Descomposición Propia Generalizada (Proper Generalized Decomposition PGD). Basándose en una técnica novedosa de descomposición de las variables multidimensionales (como en el campo electromagnético) en una suma de productos (modos) de variables unidimensionales, y mediante algoritmos iterativos, la PGD permite abordar, con una reducida necesidad de medios computacionales, problemas complejos cuya solución requiere medios extraordinarios empleando las técnicas tradicionales. Estas nuevas técnicas han sido aplicadas con éxito en otros dominios, como el de la simulación de elementos mecánicos y en ciencia de los materiales. El objetivo de la presente tesis es precisamente el de la aplicación de estas novedosas técnicas a la simulación de fenómenos electromagnéticos en los diferentes elementos diseñados para la utilización de la energía eléctrica. La tesis se centra en el desarrollo de la modelización de conductores de transmisión de energía eléctricas y redes de puesta a tierra, estructuras básicas en la tecnología eléctrica pero que sirven para analizar y observar con detalle además de validar con métodos tradicionales, de demostrada fiabilidad, el gran potencial de la PGD, dejando abierta la aplicación de la técnica a elementos técnicamente más complejos como transformadores y máquinas rotativas en futuros trabajos del Grupo de Investigación de Instalaciones, Sistemas y Equipos Eléctricos (ISEE) de la Universidad Politécnica de Valencia (UPV). Las principales novedades que aporta la tesis sobre trabajos realizados anteriormente son parte de los objetivos que persigue, y son las siguientes: - Optimización de la técnica de la PGD. En la presente tesis se ha optado por una aplicación de la PGD con la máxima descomposición posible en funciones elementales, es decir, los modos se considerarán formados por productos de funciones exclusivamente unidimensionales (x, y, z, t, frecuencia, etc.), discretizadas posteriormente con mallas unidimensionales uniformes. Esto nos llevará a obtener códigos simples, de sencilla implementación y que necesitarán de reducidos recursos computacionales. - Aplicación de la PGD al campo del Electromagnetismo, ya que la gran mayoría de las referencias que se pueden encontrar en la aplicación de la PGD se refieren al campo de la mecánica y los materiales. Este trabajo pretende utilizar avances logrados en esos campos, y aplicarlos al campo del electromagnetismo, donde sólo muy pocos trabajos han sido publicados en los últimos años, con el objetivo de contribuir a seguir abriendo un nuevo frente en el desarrollo y aplicación de la técnica, que permita vencer las limitaciones y problemas que hasta el momento se presentan con las técnicas de resolución tradicionales. / [CAT] Plantejament i resum de la tesi doctoral. La present tesi se centra a donar llum a l'estat actual dels mètodes numèrics tradicionals, les limitacions a què ens enfrontem, i les diferents sol¿lucions que s'estan plantejant per a la simulació del comportament electromagnètic de diversos materials com a conductors elèctrics en linies de transmissió i instal¿lacions d'enclavament a terra, basant-se en la formulació que defineix la Teoria de Camps Electromagnètics (Lleis de Maxwell) , i les diferents condicions de cada problema particular a resoldre. L'objectiu principal de la tesi és investigar l'aplicació de tècniques numèriques de molt recent aplicació, conegudes com la Descomposició Pròpia Generalitzada (Proper Generalized Decomposition PGD). Basant-se en una tècnica nova de descomposició de les variables multidimensionales (com en el camp electromagnètic) en una suma de productes (modes) de variables unidimensionals, i per mitjà d'algoritmes iteratius. La PGD permet abordar, amb una reduïda necessitat de mitjans computacionals, problemes complexos la sol¿lució de la qual requereix mitjans extraordinaris emprant les tècniques tradicionals. Tals tècniques han sigut aplicades amb èxit en altres dominis, com el de la simulació d'elements mecànics i en ciència dels materials. L'objectiu de la present tesi és precisament el de l'aplicació d'estes noves tècniques a la simulació de fenòmens electromagnètics en els diversos elements dissenyats per a l'utilització de l'energia elèctrica. La tesi es centra en el desenrotllament de la modelització de conductors de transmissió d'energia eléctrica i xarxes d'enclavament a terra, estructures bàsiques en la tecnologia elèctrica però que serveixen per a analitzar i observar amb detall a més de validar amb mètodes tradicionals, de demostrada fiabilitat, el gran potencial de la PGD, deixant oberta l'aplicació de la tècnica a elements tècnicament més complexos com a transformadors i màquines rotatives en futures treballs del Grup d'Investigació d'Instal¿lacions, Sistemes i Equips Elèctrics (ISEE) de la Universitat Politècnica de València (UPV). Les principals novetats que aporta la tesi sobre treballs realitzats anteriorment són part dels objectius que persegueix, i són les següents: -Optimització de la tècnica de la PGD. En la present tesi s'ha optat per una aplicació de la PGD amb la màxima descomposició possible en funcions elementals, és a dir, els modes es consideraran formats per productes de funcions exclusivament unidimensionals (x, y, z, t, freqüència, etc.), discretizadas amb malles unidimensionals uniformes. Açò ens portarà a obtindre còdics simples, de senzilla implementació i que necessitaran de reduïts recursos computacionals. -Aplicació de la PGD al camp de l'Electromagnetisme, ja que la gran majoria de les referències que es poden trobar en l'aplicació de la PGD es refereixen al camp de la mecànica i els materials. Este treball pretén utilitzar avanços aconseguits en esses camps, i aplicar-los al camp de l'electromagnetisme, on només molt pocs treballs han sigut publicats en els últims anys, amb l'objectiu de contribuir a continuar obrint un nou front en el desentrollament i aplicació de la tècnica, que permeta véncer les limitacions i problemes que fins al moment es presenten amb les tècniques de resol¿lució tradicionals. / Lázaro García, J. (2016). Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61966 / TESIS
24

Prevalence, Factor Structure and Correlates of DSM-5-TR Criteria for Prolonged Grief Disorder

Treml, Julia, Brähler, Elmar, Kersting, Anette 12 October 2023 (has links)
Background: Prolonged Grief Disorder (PGD) is now included in Section II of the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Text Revision (DSM- 5-TR). To understand the health burden and then allocate economic and professional resources, it is necessary to provide epidemiological data for this new disorder. This is especially relevant since the new diagnostic criteria differ from its predecessors, which may affect the generalizability of previous findings. More information on the characteristics of people suffering from PGD is also beneficial to better identify individuals at risk. This study, therefore, aimed to estimate the prevalence of the new PGD criteria in a representative population-based sample, evaluate the factor structure, sociodemographic, and loss-related correlates of PGD caseness and explore possible predictors. Methods: Out of a representative sample of the German general population (N = 2,531), n = 1,371 (54.2%) reported to have experienced a significant loss throughout lifetime. Participants provided sociodemographic data and loss-related characteristics. PGD symptoms were measured using items from the German versions of the Prolonged Grief Scale (PG-13) and the Inventory of Complicated Grief (ICG), which could be matched to the DSM-5-TR criteria for PGD. Results: The conditional prevalence of PGD was 3.4% (n = 47). The most frequently reported symptoms were intense emotional pain and intense yearning or longing for the deceased. The confirmatory factor analysis confirmed a unidimensional model of PGD. Regression analysis demonstrated that time since the death, the relationship to the deceased, and unpreparedness for the death were significant predictors of PGD. Conclusion: Although the prevalence of 3.4% using the new diagnostic criteria is lower than the prevalence previously suggested by a meta-analysis, PGD remains a substantial disorder in the general population. In particular, the loss of a partner or child increases the risk for PGD, as does unpreparedness for the death of a loved one. Clinicians should pay particular attention to these high-risk groups. Further clinical implications are discussed.
25

Contribution au développement de méthodes numériques destinées à résoudre des problèmes couplés raides rencontrés en mécanique des matériaux / Contribution to Development of Numerical Methods for Solving Stiff Coupled Problems in the Framework of Mechanics of Materielas

Ramazzotti, Andrea 11 July 2016 (has links)
Ce travail de recherche est une contribution au développement de la méthode Décomposition Propre Généralisée (PGD) à la résolution de problèmes de diffusion-réaction raides dédiés à la mécanique des matériaux. Ce type d’équations est notamment rencontré lors de l’oxydation des matériaux polymères et il est donc nécessaire de mettre en place un outil pour simuler ce phénomène afin de prédire numériquement le vieillissement de certains matériaux composites à matrice organique utilisés dans l’aéronautique. La méthode PGD a été choisie dans cette thèse car elle permet un gain en temps de calcul notable par rapport à la méthode des éléments finis. Néanmoins cette famille d’équations n’a jamais été traitée avec cette méthode. Cette dernière se résume à la recherche de solutions d’Équations aux Dérivées Partielles sous forme séparée. Dans le cas d’un problème 1D transitoire, cela revient à chercher la solution sous la forme d’une représentation séparée espace-temps. Dans le cadre de cette thèse, un outil numérique a été mis en place permettant une flexibilité telle que différents algorithmes peuvent être testés. La diffusion Fickienne 1D est tout d’abord évaluée avec en particulier une discussion sur l’utilisation d’un schéma de type Euler ou Runge-Kutta à pas adaptatif pour la détermination des fonctions temporelles. Le schéma de Runge-Kutta permet de réduire notablement le temps de calcul des simulations.Ensuite, la mise en place de l’outil pour les systèmes d’équation de type diffusion-réaction nécessite des algorithmes de résolution de systèmes non linéaires, couplés et raides. Pour cela, différents algorithmes ont été implémentés et discutés.Dans le cas d’un système non linéaire, l’utilisation de la méthode de Newton-Raphson dans les itérations pour la recherche du nouveau mode permet de réduire le temps de calcul en limitant le nombre de modes à considérer pour une erreur donnée. En ce qui concerne les couplages, deux stratégies de résolution ont été évaluées. Le couplage fort mène aux mêmes conclusions que dans le cas non linéaire. Les systèmes raides mais linéaires ont ensuite été traités en implémentant l’algorithme de Rosenbrock pour la détermination des fonctions temporelles. Cet algorithme permet contrairement à Euler et à Runge-Kutta de construire une solution avec un temps de calcul raisonnable liée à l’adaptation du maillage temporel sous-jacent à l’utilisation de cette méthode. La résolution d’un système d’équations de diffusion-réaction raides non linéaires utilisée pour la prédiction de l’oxydation d’un composite issu de la littérature a été testée en utilisant les différents algorithmes mis en place. Néanmoins, les non linéarités et la raideur du système génèrent des équations différentielles intermédiaires à coefficients variables pour lesquelles la méthode de Rosenbrock montre ses limites. Il sera donc nécessaire de tester ou développer d’autres algorithmes pour lever ce verrou.Mots / This work presents the development of the Proper Generalized Decomposition (PGD) method for solving stiff reaction-diffusion equations in the framework of mechanics of materials. These equations are particularly encountered in the oxidation of polymers and it is therefore necessary to develop a tool to simulate this phenomenon for example for the ageing of organic matrix composites in aircraft application. The PGD method has been chosen in this work since it allows a large time saving compared to the finite element method. However this family of equations has never been dealt with this method. The PGD method consists in approximating a solution of a Partial Differential Equation with a separated representation. The solution is sought under a space-time separated representation for a 1D transient equation.In this work, a numerical tool has been developed allowing a flexibility to test different algorithms. The 1D Fickian diffusion is first evaluated and two numerical schemes, Euler and Runge-Kutta adaptive methods, are discussed for the determination of the time modes. The Runge-Kutta method allows a large time saving. The implementation of the numerical tool for reaction-diffusion equations requires the use of specific algorithms dedicated to nonlinearity, couplingand stiffness. For this reason, different algorithms have been implemented and discussed. For nonlinear systems, the use of the Newton-Raphson algorithm at the level of the iterations to compute the new mode allows time saving by decreasing the number of modes required for a given precision. Concerning the couplings, two strategies have been evaluated. The strong coupling leads to the same conclusions as the nonlinear case. The linear stiff systems are then studied by considering a dedicated method, the Rosenbrock method, for the determination of the time modes. This algorithm allows time saving compared to the Runge-Kutta method. The solution of a realistic nonlinear stiff reaction-diffusionsystem used for the prediction of the oxidation of a composite obtained from the literature has been tested by using the various implemented algorithms. However, the nonlinearities and the stiffness of the system generate differential equations with variable coefficients for which the Rosenbrock method is limited. It will be necessary to test or develop other algorithms to overcome this barrier.
26

Simulation des Instabilites Thermoconvectives de Fluides Complexes par des Approches Multi-Echelles

Aghighi, Mohammad Saeid 24 March 2014 (has links) (PDF)
Dans ces travaux , nous avons deux principaux objectifs physique et numérique. Le problème physique consiste à trouver la solution de Rayleigh-Bénard pour des fluides newtoniens et non-newtoniens. Dans la présente étude, une présentation générale des résultats de la convection de Rayleigh-Bénard (RBC) est donnée dans le cas des fluides newtoniens et non-newtoniens tels que des fluides rhéofluidifiants modélisés par la loi puissance et des fluides viscoplastiques (fluides de Bingham, Herschel-Bulkley et Casson), en régime permanent et transitoire. Dans le cas des fluides viscoplastiques, les modèles macroscopiques ne prenant pas bien en compte la réalité physique de la contrainte seuil ont fait l'objet d'une modélisation. Un modèle mesoscopique proposé par Hébraud et Lequeux a été utilisé. Le problème numérique consiste à développer la méthode de résolution PGD (Proper Generalized Decomposition) pour résoudre les modèles non linéaires couplés transitoires, dans le cas du problème de Rayleigh-Bénard. Cette méthode est également utilisée pour résoudre le problème RBC paramétrique en y ajoutant quelques variables physiques comme coordonnées supplémentaires. Par ailleurs, dans le cas des fluides non-newtoniens, nous avons utilisé la PGD pour résoudre les équations mesoscopiques et macroscopiques couplées.
27

Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique

Giraldi, Loïc 27 November 2012 (has links) (PDF)
Cette thèse apporte différentes contributions à la résolution de problèmes de grande dimension dans le domaine du calcul scientifique, en particulier pour la quantification d'incertitudes. On considère ici des problèmes variationnels formulés dans des espaces produit tensoriel. On propose tout d'abord une stratégie de préconditionnement efficace pour la résolution de systèmes linéaires par des méthodes itératives utilisant des approximations de tenseurs de faible rang. Le préconditionneur est recherché comme une approximation de faible rang de l'inverse. Un algorithme glouton permet le calcul de cette approximation en imposant éventuellement des propriétés de symétrie ou un caractère creux. Ce préconditionneur est validé sur des problèmes linéaires symétriques ou non symétriques. Des contributions sont également apportées dans le cadre des méthodes d'approximation directes de tenseurs qui consistent à rechercher la meilleure approximation de la solution d'une équation dans un ensemble de tenseurs de faibles rangs. Ces méthodes, parfois appelées "Proper Generalized Decomposition" (PGD), définissent l'optimalité au sens de normes adaptées permettant le calcul a priori de cette approximation. On propose en particulier une extension des algorithmes gloutons classiquement utilisés pour la construction d'approximations dans les ensembles de tenseurs de Tucker ou hiérarchiques de Tucker. Ceci passe par la construction de corrections successives de rang un et de stratégies de mise à jour dans ces ensembles de tenseurs. L'algorithme proposé peut être interprété comme une méthode de construction d'une suite croissante d'espaces réduits dans lesquels on recherche une projection, éventuellement approchée, de la solution. L'application à des problèmes symétriques et non symétriques montre l'efficacité de cet algorithme. Le préconditionneur proposé est appliqué également dans ce contexte et permet de définir une meilleure norme pour l'approximation de la solution. On propose finalement une application de ces méthodes dans le cadre de l'homogénéisation numérique de matériaux hétérogènes dont la géométrie est extraite d'images. On présente tout d'abord des traitements particuliers de la géométrie ainsi que des conditions aux limites pour mettre le problème sous une forme adaptée à l'utilisation des méthodes d'approximation de tenseurs. Une démarche d'approximation adaptative basée sur un estimateur d'erreur a posteriori est utilisée afin de garantir une précision donnée sur les quantités d'intérêt que sont les propriétés effectives. La méthodologie est en premier lieu développée pour l'estimation de propriétés thermiques du matériau, puis est étendue à l'élasticité linéaire.
28

Réduction dimensionnelle de type PGD pour la résolution des écoulements incompressibles

Dumon, Antoine 03 June 2011 (has links) (PDF)
L'objectif de ce travail consiste à développer la méthode de résolution PGD (Proper Generalized Decomposition), qui est une méthode de réduction de modèle où la solution est recherchée sous forme séparée, à la résolution des équations de Navier-Stokes. Dans un premier temps, cette méthode est appliquée à la résolution d'équations modèles disposant d'une solution analytique. L' équation de diffusion stationnaire 2D et 3D, l'équation de diffusion instationnaire 2D et les équations de Burgers et Stokes sont traitées. Nous montrons que dans tous ces cas la méthode PGD permet de retrouver les solutions analytiques avec une précision équivalente au modèle standard. Nous mettons également en évidence la supériorité de la PGD par rapport au modèle standard en terme de temps de calcul. En effet, dans tous ces cas, laPGD se montre beaucoup plus rapide que le solveur standard (plusieurs dizaine de fois). La résolution des équations de Navier-Stokes isothermes et anisothermes est ensuite effectuée par une discrétisation volumes finis sur un maillage décalé où le couplage vitesse-pression a été géré à l'aide d'un schéma de prédiction-correction. Dans ce cas une décomposition PGD sur les variables d'espaces uniquement a été choisie. Pour les écoulements incompressibles 2D stationnaire ou instationnaire, de type cavité entrainée et/ou différentiellement chauffé, les résultats obtenus par résolution PGD sont similaires à ceux du solveur standard avec un gain de temps significatif (la PGD est une dizaine de fois plus rapide que le solveur standard). Enfin ce travail introduit une première approche de la résolution des équations de transferts par méthode PGD en formulation spectrale. Sur les différents problèmes traités, à savoir l'équation de diffusion stationnaire, l'équation de Darcy et les équations de Navier-Sokes, la PGD a montré une précision aussi bonne que le solveur standard. Un gain de temps a été observé pour le cas de l'équation de Poisson, par contre, concernant le problème de Darcy ou les équations de Navier-Stokes les performances de la PGD en terme de temps de calcul peuvent encore être améliorées.
29

A new approximation framework for PGD-based nonlinear solvers / Un nouveau cadre d'approximation dédié à la strategie de calcul PGD pour problèmes non-lineaires

Capaldo, Matteo 23 November 2015 (has links)
Le but de ce travail est d'introduire un cadre d'approximation, la Reference Points Method, afin de réduire la complexité de calcul des opérations algébriques lorsqu'elles concernent des approximations à variables séparées dans le cadre de la Proper Generalized Decomposition.La PGD a été introduite dans [1] dans le cadre de la méthode LaTIn pour résoudre efficacement des équations différentielles non linéaires et dépendants du temps en mécanique des structures. La technique consiste à chercher la solution d'un problème dans une base d'ordre réduit (ROB) qui est automatiquement et à la volée générée par la méthode LaTIn. La méthode LaTIn est une stratégie itérative qui génère les approximations de la solution sur l'ensemble du domaine espace-temps-paramètres par enrichissements successifs. Lors d'une itération particulière, la ROB, qui a déjà été formée, est d'abord utilisée pour calculer un nouveau modèle réduit (ROM) et, donc, pour trouver une nouvelle approximation de la solution. Si la qualité de cette approximation ne suffit pas, la ROB est enrichie avec la génération d'un nouveau produit de fonctions PGD en utilisant un algorithme de type 'greedy'.Les techniques de réduction de modèle sont particulièrement efficaces lorsque le ROM a besoin d'être construit qu'une seule fois. Ce n'est pas le cas pour les techniques de réduction de modèle quand elles concernent des problèmes non linéaires. En effet, dans un tel cas, les opérateurs qui sont impliqués dans la construction du ROM varient au cours du processus itératif et des calculs préliminaires ne peuvent pas être effectués à l'avance pour accélérer le processus 'online'.Par conséquent, la construction du ROM est un élément coûteux de la stratégie de calcul en terme de temps de calcul. Il en découle la nécessité d'évaluer, à chaque itération, la fonction non linéaire de grande dimension (et éventuellement sa jacobienne) et ensuite sa projection pour obtenir les opérateurs réduits. Cela représente un point de blocage des stratégies de réduction de modèle dans le cadre non linéaire. Le présent travail a comme but une réduction ultérieure du coût de calcul, grâce à l'introduction d'un nouveau cadre de rapprochement dédiée à la stratégie de calcul LaTIn-PGD. Il est basé sur la notion de temps, de points et de paramètres de référence et permet de définir une version compressée des données. Comparé à d'autres techniques similaires [3,4] cela ne se veut pas une technique d'interpolation, mais un cadre algébrique qui permet de donner une première approximation, peu coûteuse, de toutes les quantités sous une forme à variable séparés par des formules explicites. L'espace de données compressées présente des propriétés intéressantes qui traitent les opérations algébriques élémentaires. Le RPM est introduit dans le solveur LaTIn-PGD non linéaire pour calculer certaines opérations répétitives. Ces opérations sont liées à la résolution du problème du temps / paramètre qui implique la mise à jour de l'opérateur tangent et la projection de ce dernier sur la base réduite. La RPM permet de simplifier et de réduire le nombre d'opérations nécessaires.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010. / The aim of this work is to introduce an approximation framework, called Reference Points Method (RPM), in order to decrease the computational complexity of algebraic operations when dealing with separated variable approximations in the Proper Generalized Decomposition (PGD) framework.The PGD has been introduced in [1] in the context of the LATIN method to solve efficiently time dependent and/or parametrized nonlinear partial differential equations in structural mechanics (see, e.g., the review [2] for recent applications). Roughly, the PGD technique consists in seeking the solution of a problem in a relevant Reduced-Order Basis (ROB) which is generated automatically and on-the-fly by the LATIN method. This latter is an iterative strategy which generates the approximations of the solution over the entire time- space-parameter domain by successive enrichments. At a particular iteration, the ROB, which has been already formed, is at first used to compute a projected Reduced-Order Model (ROM) and find a new approximation of the solution. If the quality of this approximation is not sufficient, the ROB is enriched by determining a new functional product using a greedy algorithm.However, model reduction techniques are particularly efficient when the ROM needs one construction only. This is not the case for the model reduction techniques when they are addressed to nonlinear problems. Indeed, in such a case, the operators which are involved in the construction of the ROM change all along the iterative process and no preliminary computations can be performed in advance to speed up the online process. Hence, the construction of the ROM is an expensive part of the calculation strategy in terms of CPU. It ensues from the need to evaluate the high-dimensional nonlinear function (and eventually its Jacobian) and then to project it to get the low-dimensional operators at each computational step of a solution algorithm. This amounts to being the bottleneck of nonlinear model reduction strategies.The present work is then focused on a further reduction of the computational cost, thanks to the introduction of a new approximation framework dedicated to PGD-based nonlinear solver. It is based on the concept of reference times, points and parameters and allows to define a compressed version of the data. Compared to other similar techniques [3,4] this is not an interpolation technique but an algebraic framework allowing to give an inexpensive first approximation of all quantities in a separated variable form by explicit formulas. The space of compressed data shows interesting properties dealing the elementary algebraic operations. The RPM is introduced in the PGD-based nonlinear solver to compute some repetitive operations. These operations are related to the resolution of the time/parameter problem that involves the update of the tangent operator (for nonlinear problems) and the projection of this latter on the Reduced Order Basis. For that the RPM allows to simplify and reduce the number of operations needed.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010.
30

Numerical approximations with tensor-based techniques for high-dimensional problems

Mora Jiménez, María 29 January 2024 (has links)
Tesis por compendio / [ES] La idea de seguir una secuencia de pasos para lograr un resultado deseado es inherente a la naturaleza humana: desde que empezamos a andar, siguiendo una receta de cocina o aprendiendo un nuevo juego de cartas. Desde la antigüedad se ha seguido este esquema para organizar leyes, corregir escritos, e incluso asignar diagnósticos. En matemáticas a esta forma de pensar se la denomina 'algoritmo'. Formalmente, un algoritmo es un conjunto de instrucciones definidas y no-ambiguas, ordenadas y finitas, que permite solucionar un problema. Desde pequeños nos enfrentamos a ellos cuando aprendemos a multiplicar o dividir, y a medida que crecemos, estas estructuras nos permiten resolver diferentes problemas cada vez más complejos: sistemas lineales, ecuaciones diferenciales, problemas de optimización, etcétera. Hay multitud de algoritmos que nos permiten hacer frente a este tipo de problemas, como métodos iterativos, donde encontramos el famoso Método de Newton para buscar raíces; algoritmos de búsqueda para localizar un elemento con ciertas propiedades en un conjunto mayor; o descomposiciones matriciales, como la descomposición LU para resolver sistemas lineales. Sin embargo, estos enfoques clásicos presentan limitaciones cuando se enfrentan a problemas de grandes dimensiones, problema que se conoce como `la maldición de la dimensionalidad'. El avance de la tecnología, el uso de redes sociales y, en general, los nuevos problemas que han aparecido con el desarrollo de la Inteligencia Artificial, ha puesto de manifiesto la necesidad de manejar grandes cantidades de datos, lo que requiere el diseño de nuevos mecanismos que permitan su manipulación. En la comunidad científica, este hecho ha despertado el interés por las estructuras tensoriales, ya que éstas permiten trabajar eficazmente con problemas de grandes dimensiones. Sin embargo, la mayoría de métodos clásicos no están pensados para ser empleados junto a estas operaciones, por lo que se requieren herramientas específicas que permitan su tratamiento, lo que motiva un proyecto como este. El presente trabajo se divide de la siguiente manera: tras revisar algunas definiciones necesarias para su comprensión, en el Capítulo 3, se desarrolla la teoría de una nueva descomposición tensorial para matrices cuadradas. A continuación, en el Capítulo 4, se muestra una aplicación de dicha descomposición a grafos regulares y redes de mundo pequeño. En el Capítulo 5, se plantea una implementación eficiente del algoritmo que proporciona la nueva descomposición matricial, y se estudian como aplicación algunas EDP de orden dos. Por último, en los Capítulos 6 y 7 se exponen unas breves conclusiones y se enumeran algunas de las referencias consultadas, respectivamente. / [CA] La idea de seguir una seqüència de passos per a aconseguir un resultat desitjat és inherent a la naturalesa humana: des que comencem a caminar, seguint una recepta de cuina o aprenent un nou joc de cartes. Des de l'antiguitat s'ha seguit aquest esquema per a organitzar lleis, corregir escrits, i fins i tot assignar diagnòstics. En matemàtiques a aquesta manera de pensar se la denomina algorisme. Formalment, un algorisme és un conjunt d'instruccions definides i no-ambigües, ordenades i finites, que permet solucionar un problema. Des de xicotets ens enfrontem a ells quan aprenem a multiplicar o dividir, i a mesura que creixem, aquestes estructures ens permeten resoldre diferents problemes cada vegada més complexos: sistemes lineals, equacions diferencials, problemes d'optimització, etcètera. Hi ha multitud d'algorismes que ens permeten fer front a aquesta mena de problemes, com a mètodes iteratius, on trobem el famós Mètode de Newton per a buscar arrels; algorismes de cerca per a localitzar un element amb unes certes propietats en un conjunt major; o descomposicions matricials, com la descomposició DL. per a resoldre sistemes lineals. No obstant això, aquests enfocaments clàssics presenten limitacions quan s'enfronten a problemes de grans dimensions, problema que es coneix com `la maledicció de la dimensionalitat'. L'avanç de la tecnologia, l'ús de xarxes socials i, en general, els nous problemes que han aparegut amb el desenvolupament de la Intel·ligència Artificial, ha posat de manifest la necessitat de manejar grans quantitats de dades, la qual cosa requereix el disseny de nous mecanismes que permeten la seua manipulació. En la comunitat científica, aquest fet ha despertat l'interés per les estructures tensorials, ja que aquestes permeten treballar eficaçment amb problemes de grans dimensions. No obstant això, la majoria de mètodes clàssics no estan pensats per a ser emprats al costat d'aquestes operacions, per la qual cosa es requereixen eines específiques que permeten el seu tractament, la qual cosa motiva un projecte com aquest. El present treball es divideix de la següent manera: després de revisar algunes definicions necessàries per a la seua comprensió, en el Capítol 3, es desenvolupa la teoria d'una nova descomposició tensorial per a matrius quadrades. A continuació, en el Capítol 4, es mostra una aplicació d'aquesta descomposició a grafs regulars i xarxes de món xicotet. En el Capítol 5, es planteja una implementació eficient de l'algorisme que proporciona la nova descomposició matricial, i s'estudien com a aplicació algunes EDP d'ordre dos. Finalment, en els Capítols 6 i 7 s'exposen unes breus conclusions i s'enumeren algunes de les referències consultades, respectivament. / [EN] The idea of following a sequence of steps to achieve a desired result is inherent in human nature: from the moment we start walking, following a cooking recipe or learning a new card game. Since ancient times, this scheme has been followed to organize laws, correct writings, and even assign diagnoses. In mathematics, this way of thinking is called an algorithm. Formally, an algorithm is a set of defined and unambiguous instructions, ordered and finite, that allows for solving a problem. From childhood, we face them when we learn to multiply or divide, and as we grow, these structures will enable us to solve different increasingly complex problems: linear systems, differential equations, optimization problems, etc. There is a multitude of algorithms that allow us to deal with this type of problem, such as iterative methods, where we find the famous Newton Method to find roots; search algorithms to locate an element with specific properties in a more extensive set; or matrix decompositions, such as the LU decomposition to solve some linear systems. However, these classical approaches have limitations when faced with large-dimensional problems, a problem known as the `curse of dimensionality'. The advancement of technology, the use of social networks and, in general, the new problems that have appeared with the development of Artificial Intelligence, have revealed the need to handle large amounts of data, which requires the design of new mechanisms that allow its manipulation. This fact has aroused interest in the scientific community in tensor structures since they allow us to work efficiently with large-dimensional problems. However, most of the classic methods are not designed to be used together with these operations, so specific tools are required to allow their treatment, which motivates work like this. This work is divided as follows: after reviewing some definitions necessary for its understanding, in Chapter 3, the theory of a new tensor decomposition for square matrices is developed. Next, Chapter 4 shows an application of said decomposition to regular graphs and small-world networks. In Chapter 5, an efficient implementation of the algorithm provided by the new matrix decomposition is proposed, and some order two PDEs are studied as an application. Finally, Chapters 6 and 7 present some brief conclusions and list some of the references consulted. / María Mora Jiménez acknowledges funding from grant (ACIF/2020/269) funded by the Generalitat Valenciana and the European Social Found / Mora Jiménez, M. (2023). Numerical approximations with tensor-based techniques for high-dimensional problems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202604 / Compendio

Page generated in 0.0451 seconds