51 |
Simulation numérique de la reconnexion magnétique : mécanismes cinétiques sous-jacents à la description fluide des ions / Numerical simulation of magnetic reconnection : kinetic mechanisms underlying the fluid description of the ionsAunai, Nicolas 08 February 2011 (has links)
La capacité à libérer l’énergie stockée dans le champ magnétique et à briser le théorème du gel font de la reconnexion magnétique un des phénomènes les plus importants de la physique des plasmas. Lorsqu’elle se produit dans un environnement non-collisionel comme la magnétosphère terrestre, une modélisation cinétique est à priori nécessaire. Cependant la plupart de notre compréhension du phénomène se base sur un interprétation fluide, plus intuitive. Dans quelle mesure ces deux interprétations d’un même phénomène sont-elles reliées ? C’est la problématique à laquelle cette thèse s’intéresse, dans le cas de la reconnexion antiparallèle et pour la population ionique du plasma. La première partie de ce travail s’intéresse à l’accélération fluide et cinétique des protons au sein de la région de reconnexion. Il est montré comment le mouvement individuel des particules joue un rôle du point de vue fluide via la force de pression, jusqu’alors négligée dans les modèles. Ces résultats ont également mené dans une seconde partie à des prédictions et vérifications observationnelles basées sur les données des satellites Cluster. Dans un troisième temps, nous montrons le rôle important joué par le flux d’énergie thermique dans le transfert d’énergie au cours du processus de reconnexion, dans le cas symétrique et asymétrique. Enfin la dernière partie de ce manuscrit propose une solution au problème fondamental consistant décrire une couche de courant tangentielle asymétrique dans un état d’équilibre cinétique / Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of antiparallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the La place force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration ; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to the thermal energy flux rather than to the convective kinetic energy flux, although the latter is generally supposed dominant. In the symmetric case, we propose the pressure tensor to be an additional proxy of the ion decoupling region in satellite data and verify this suggestion by studying a reconnection event encountered by the Cluster spacecrafts. Finally, the last part of this thesis is devoted to the study of the kinetic structure of asymmetric tangential current sheets where connection can develop. This theoretical part consists in finding a steady state solution to the Vlasov-Maxwell system for the protons in such a configuration. We present the theory and its first confrontation to numerical tests.
|
52 |
Étude statistique de l’influence des paramètres expérimentaux et du champ magnétique sur les décharges sparks dans l’eau déioniséeGéraud, Korentin 08 1900 (has links)
Les décharges Sparks sont des décharges électriques transitoires avec une courte durée de vie. Par rapport à son initiation en milieu gazeux, l’initiation de ce type de décharges dans un liquide diélectrique induit de nouveaux phénomènes physico-chimiques dans le plasma et aux interfaces plasma-liquide et plasma-électrodes. Depuis une vingtaine d’années, la recherche scientifique exploite les propriétés de ces décharges pour des applications diverses : dépollution de liquide, synthèse de nanoparticules, usinage par électro-érosion, etc. Dans ce contexte, ce mémoire a pour objectif d’apporter une meilleure compréhension de la physique des décharges Sparks dans les liquides diélectriques.
Les décharges dans les liquides se caractérisent par un comportement stochastique fort. Des études statistiques d’un nombre important de décharges sur les caractéristiques électriques ont été effectuées en fonction de différents paramètres. Ces paramètres sont la distance inter-électrodes, la nature des électrodes ainsi que la polarité de la tension appliquée. L’acquisition des courbes courant-tension de chaque décharge permet de déterminer ses propriétés électriques, soient la tension de claquage, le courant de la décharge, le délai de claquage, la charge injectée, la probabilité de claquage, etc. L’influence d’un champ magnétique externe, en particulier son orientation par rapport à l’axe des électrodes, sur les caractéristiques de la décharge a ensuite été explorée. L’étude des interactions plasma-électrode en fonction de l’orientation du champ magnétique a été réalisée en analysant des images de la dispersion des impacts créés par les décharges sur la contre-électrode et de l’érosion de la pointe. De plus, nous avons démontré que la nature du matériau des électrodes, en particulier ses propriétés magnétiques, influe grandement le taux d’érosion de celles-ci.
Les résultats rapportés dans ce mémoire contribueront non seulement à l’avancement de la physique des décharges dans les liquides, mais aussi au développement / optimisation des applications dans des différents domaines technologiques. / Spark discharges are transient electric discharges with a short lifetime. Compared to its initiation in a gaseous medium, the initiation of this type of discharges in a dielectric liquid induces new physico-chemical phenomena in the plasma and at the plasma-liquid and plasma-electrode interfaces. For about twenty years, scientific research has been exploiting the properties of these discharges for various applications: liquid depollution, nanoparticle synthesis, electro-erosion machining, etc. In this context, this thesis aims to provide a better understanding of the physics of Sparks discharges in dielectric liquids.
Discharges in liquids are characterized by a strong stochastic behavior. Statistical studies of a large number of discharges on the electrical characteristics have been performed as a function of different parameters. These parameters are the inter-electrode distance, the nature of the electrodes and the polarity of the applied voltage. The acquisition of the current-voltage curves of each discharge allows to determine its electrical properties, i.e. the breakdown voltage, the discharge current, the breakdown delay, the injected charge, the breakdown probability, etc. The influence of an external magnetic field, in particular its orientation relative to the axis of the electrodes, on the characteristics of the discharge was then explored. The study of the plasma-electrode interactions as a function of the magnetic field orientation was performed by analyzing images of the dispersion of the impacts created by the discharges on the counter-electrode and the erosion of the tip. Furthermore, we have shown that the nature of the electrode material, in particular its magnetic properties, greatly influences the rate of electrode erosion.
The results reported in this thesis will contribute not only to the advancement of the physics of discharges in liquids, but also to the development / optimization of applications in different technological fields.
|
53 |
Caractérisation d'un procédé de dépôt de couches minces basé sur l'injection d'un aérosol dans un plasma à basse pressionSimonnet, Claire 08 1900 (has links)
Le dépôt chimique en phase vapeur assisté par plasma hors équilibre thermodynamique est largement étudié pour la synthèse de couches minces fonctionnelles. Pour certaines applications, la multifonctionnalité est un prérequis, ce qui peut être réalisé à l’aide d’un certain nombre de méthodes, dont le dépôt par plasma de couches minces nanocomposites. En utilisant un réacteurinjecteur, des précurseurs liquides avec ou sans nanoobjets peuvent être injectés dans la décharge sous la forme d’aérosols en régime pulsé, ce qui donne lieu à des plasmas transitoires avec des propriétés fondamentales qui dépendent du temps. L’impact de l’injection de pulses d’argon dans un plasma RF d’argon à basse pression a récemment été étudié par spectroscopie d’émission optique. La présente étude s’inscrit comme une suite à ce travail et vise à caractériser le procédé en présence de pulses de pentane pour le dépôt de couches minces hydrocarbonées, d’une part, et de pulses de pentane et de nanoparticules d’oxyde de zinc pour le dépôt de couches minces hydrocarbonées avec des nanoinclusions d’oxyde métallique, d’autre part. Dans la première partie, les résultats montrent que l’augmentation de la quantité d’aérosol injectée dans le plasma RF d’argon, obtenue en augmentant soit la fréquence des impulsions, soit la quantité de liquide injectée pendant une impulsion, influence différemment les variations transitoires de la pression d’opération et de la tension d’auto-polarisation sur le substrat pendant chaque impulsion. Dans la gamme des conditions expérimentales étudiées, la vitesse de dépôt des revêtements CxHy augmente avec la quantité de précurseur injecté. Cependant, en corrélant ces données avec les caractéristiques de l’aérosol obtenue par diffusion de la lumière, il s’avère que la taille des gouttelettes joue un rôle important dans la cinétique du dépôt et dans l’évolution des propriétés des couches déposées. Dans la seconde partie, les données montrent que des couches minces formées de nanoparticules de ZnO imbriquées dans une matrice CxHy peuvent être formées en remplaçant le pentane par une solution colloïdale. Dans ces conditions, la vitesse de dépôt et la quantité de nanoparticules injectées dans la couche peuvent être contrôlée en ajustant la fréquence des impulsions et la quantité de précurseur injectée pendant une impulsion. / Plasma-enhanced chemical vapor deposition in non-equilibrium plasmas is widely studied
for the synthesis of functional thin films. For some applications, multifunctionality is a prerequisite,
which can be achieved using several methods, including plasma deposition of nanocomposite thin
films. Using a reactor-injector, liquid precursors with or without nanoobjects can be injected into
the discharge as pulsed aerosols, giving rise to transient plasmas with time-dependent fundamental
properties. The impact of injecting argon pulses into a low-pressure RF argon plasma has recently
been studied by optical emission spectroscopy. The present study is a follow-up to this work and
aims to characterize the process in the presence of pentane pulses for the deposition of thin
hydrocarbon layers, on the one hand, and pentane pulses and zinc oxide nanoparticles for the
deposition of thin hydrocarbon layers with metal oxide nanoinclusions, on the other hand.
In the first part, the results show that increasing the amount of aerosol injected into the RF
argon plasma, obtained by increasing either the pulse frequency or the amount of liquid injected
during a pulse, influences differently the temporal variations of the operating pressure and self-bias
voltage on the substrate during each pulse. In the range of experimental conditions studied, the
deposition rate of CxHy coatings increases with the amount of precursor injected. However, by
correlating these data with the characteristics of the aerosol obtained by light scattering, it turns out
that the size of the droplets plays an important role on the thin-film deposition kinetics and on the
evolution of the properties of the plasma-deposited layers. In the second part, the data show that
thin films formed of ZnO nanoparticles embedded in a CxHy matrix can be formed by replacing
pentane with a colloidal solution. Under these conditions, the deposition rate and the quantity of
nanoparticles injected into the layer can be controlled by adjusting the frequency of the pulses and
the quantity of precursor injected during a pulse.
|
54 |
Dégradation en milieu liquide de polystyrène solide par décharges électriques dans l’air en contact avec l’eauZamo, Aurélie 08 1900 (has links)
Les plasmas de décharges électriques qui entrent en contact avec des liquides ont suscité beaucoup d'attention depuis une cinquantaine d’années. En effet, les décharges avec des liquides se caractérisent par une réactivité chimique importante. Afin d’optimiser cette réactivité, de nombreuses études ont été effectuées en fonction de différents paramètres, tels que la configuration géométrique d’électrode, la composition du gaz, l’alimentation électrique (polarité, amplitude et fréquence), etc. Les travaux de recherche sur le traitement de l'eau par plasma et les applications environnementales ont débuté il y a plusieurs années. Plus récemment, la pollution par le plastique dans l’environnement marin et terrestre a créé un nouveau domaine d’applications des plasmas, en particulier ceux qui sont couplés avec un milieu liquide.
Dans ce mémoire de maîtrise, les décharges en milieu liquide sont appliquées à la dégradation de polystyrène (PS) solide dans l’eau. Le point de départ de cette étude a été la réalisation d’un montage pointe - pointe : l’électrode de masse est immergée dans de l’eau déionisée et l’électrode de haute tension se trouve au-dessus de la phase liquide. Le PS se situe à l’interface air/eau. Une étude paramétrique est effectuée afin d’établir les paramètres optimaux pour la dégradation, en particulier la fréquence de répétition des décharges pour des valeurs entre 2 et 10 kHz. Pour ce faire, l’étude des caractéristiques électriques ainsi qu’optiques de chaque décharge permet de suivre ses propriétés au cours du traitement et de les coupler à la perte de masse de PS. À partir de ces données, il est possible de mettre en évidence un changement de régime de décharge à haute fréquence (10 kHz) : transition d’un streamer à un spark. De ce fait, il a été possible d’établir le rôle potentiel de chaque régime (streamer à spark) dans la dégradation du PS. Cette étude a permis de proposer un mécanisme de dégradation du polystyrène. Ainsi, nous avons trouvé qu’à 10 kHz, la dégradation du PS était maximisée avec une réduction de la masse de 83%, tandis qu’elle est de 50% à 5 kHz après traitement par un nombre de décharges équivalent. La caractérisation par FTIR du PS a montré que sa composition chimique ne change pas pendant la dégradation. Cependant, l’analyse de l’eau par résonance magnétique nucléaire a permis d’identifier la présence d’une faible quantité d’éthylbenzène comme sous-produit de dégradation.
Les résultats présentés dans ce mémoire représentent une contribution à la compréhension de la dégradation de plastique par décharges électriques en milieu liquide. / Electric discharge plasmas that come into contact with liquids have attracted a great deal
of attention over the last fifty years. Indeed, discharges with liquids are characterized by
significant chemical reactivity. In order to optimize this reactivity, numerous studies have been
carried out in relation to various parameters, such as electrode geometry, gas composition, power
supply (polarity, amplitude and frequency), and so on. Research into plasma water treatment and
environmental applications began several years ago. More recently, plastic pollution in the
marine and terrestrial environment has created a new field of applications for plasmas,
particularly those coupled with a liquid.
In this master's thesis, liquid discharges are applied to the degradation of solid polystyrene
(PS) in water. The starting point for this study was the realization of a tip-to-tip set-up. The ground
electrode is immersed in deionized water, and the high-voltage electrode is above the liquid
phase. The PS is located at the air/water interface. A parametric study is carried out to establish
the optimum parameters for degradation, in particular the discharge repetition frequency for
values between 2 and 10 kHz. The study of the electrical and optical characteristics of each
discharge makes it possible to monitor its properties during processing, and to couple them to
the mass loss of the PS. From these data, it is possible to highlight a change in discharge regime
at high frequency (10 kHz): transition from streamer to spark. As a result, it was possible to
establish the potential role of each regime (streamer to spark) in PS degradation. This study
enabled us to determine the degradation mechanisms of polystyrene. We found that PS
degradation was maximized at 10 kHz, with a mass reduction of 83%, while it was 50% at 5 kHz
after treatment with an equivalent number of discharges. FTIR characterization of the PS showed
that its chemical composition did not change during degradation. However, nuclear magnetic
resonance analysis of the water identified the presence of a small amount of ethylbenzene as a
degradation by-product.
The results presented in this thesis represent a contribution to the understanding of
plastic degradation by electrical discharges in liquid systems.
|
55 |
Modélisation 2D de l’évolution temporelle d’un streamer en interaction avec un liquide diélectrique à pression atmosphériqueOuali, Anthony 08 1900 (has links)
Ce mémoire signe la fin de ma maîtrise dans le cadre du master Sciences et Technologies
des Plasmas (STP), à l’Université Paul Sabatier de Toulouse, en partenariat avec l’Univer-
sité de Montréal dans le cadre d’une double diplomation. L’objectif de cette double tutelle,
portée par Ahmad Hamdan à Montréal et Flavien Valensi à Toulouse, est l’étude d’une
décharge streamer en interaction avec une goutte d’eau au moyen du développement d’un
modèle numérique. La goutte est positionnée entre deux électrodes pointes, le tout, sur un
support en Téflon.
Pour ce faire un modèle fluide permettant de suivre l’évolution spatio-temporelle des élec-
trons, des ions positifs et des ions négatifs a été construit en python. L’équation dérive-
diffusion est résolue, en 2D, pour chaque espèce, ainsi que l’équation de Poisson afin d’obtenir
le champ électrique dans tout le domaine de calcul. Les coefficients de transport sont tabulés
en fonction du champ électrique réduit dans l’hypothèse d’équilibre avec le champ électrique
local. La photoionisation, jouant un rôle important pour la propagation du streamer positif
à pression atmosphérique, a également était prise en compte au travers de la résolution de
trois équations d’Helmholtz.
Le modèle a été validé en comparant le terme source par impact électronique, supposé pro-
portionnel à l’émission lumineuse, obtenu numériquement, à la lumière émise par la décharge
enregistrée expérimentalement dans le domaine visible à l’aide d’une caméra ICCD. La dy-
namique de la décharge a pu être étudiée grâce à l’évolution spatio-temporelle du champ
électrique, de la densité électronique et de la densité de charge d’espace.
L’influence de la constante diélectrique de la goutte sur la dynamique de la décharge a été
ensuite étudiée. La répartition spatiale du champ électrique étant modifiée par le diélec-
trique, son influence sur la décharge est importante. La vitesse de propagation des streamers
est diminuée lorsque la permittivité de la goutte diminue ainsi que la valeur de la densité
électronique dans le canal conducteur une fois formé.
Enfin, l’angle de contact entre la goutte et le Téflon a été modifié. Les résultats ainsi obte-
nus permettent de prédire le comportement de la décharge sur des géométries pouvant être
rencontrées dans différentes situations expérimentales / This thesis marks the completion of my Master’s degree in the framework of the Plasma
Sciences and Technologies (STP) program at the Paul Sabatier University of Toulouse, in
partnership with the University of Montreal for a dual degree. The objective of this joint
supervision, led by Ahmad Hamdan in Montreal and Flavien Valensi in Toulouse, is to study
a streamer discharge interacting with a water droplet through the development of a numer-
ical model. The droplet is positioned between two pointed electrodes, all placed on a Teflon
substrate.
To achieve this, a fluid model capable of tracking the spatiotemporal evolution of electrons,
positive ions, and negative ions was constructed in Python. The drift-diffusion equation is
solved in 2D for each species, along with the Poisson equation to obtain the electric field
throughout the computational domain. Transport coefficients are tabulated as a function of
the reduced electric field, assuming local equilibrium with the electric field. Photoionization,
which plays a significant role in the propagation of positive streamers at atmospheric pres-
sure, is also taken into account through the solution of three Helmholtz equations.
The model was validated by comparing the source term due to electron impact, assumed
to be proportional to the emitted light, obtained numerically, with the light emitted by the
discharge recorded experimentally in the visible range using an ICCD camera. The discharge
dynamics were studied through the spatiotemporal evolution of the electric field, electron
density, and space charge density.
The influence of the dielectric constant of the droplet on the discharge dynamics was then
investigated. The spatial distribution of the electric field is modified by the dielectric, thus
having a significant impact on the discharge. The streamer propagation velocity is reduced
when the permittivity of the droplet decreases, as well as the value of the electron density
within the formed conductive channel.
Lastly, the contact angle between the droplet and Teflon was modified. The obtained re-
sults allow predicting the behavior of the discharge on geometries encountered in different
experimental situations.
|
56 |
A model for inductive plasma wind tunnelsMagin, Thierry E. B. 10 June 2004 (has links)
A numerical model for inductive plasma wind tunnels is developed. This model provides the flow conditions at the edge of a boundary layer in front of a thermal protection material placed in the plasma jet stream at the outlet of an inductive torch. The governing equations for the hydrodynamic field are derided from the kinetic theory. The electromagnetic field is deduced from the Maxwell equations. The transport properties of partially ionized and unmagnetized plasma in weak thermal nonequilibrium are derived from the Boltzmann equation. A kinetic data base of transport collision integrals is given for the Martian atmosphere. Multicomponent transport algorithms based upon Krylov subspaces are compared to mixture rules in terms of accuracy and computational cost. The composition and thermodynamic properties in local thermodynamic
equilibrium are computed from the semi-classical statistical mechanics.
The electromagnetic and hydrodynamic fields of an inductive wind tunnel is presented. A total pressure measurement technique is thoroughly investigated by means of numerical simulations.
|
57 |
"Développement d'un instrument de mesure basée sur la FFE (Fluorescence par Faisceau d'Electrons) pour la caractérisation d'écoulements hypersoniques de basses densités en aérodynamique de rentrée" Babacar DIOPDiop, Babacar 14 December 2011 (has links) (PDF)
Ces travaux de recherche ont consisté à mettre au point un nouveau prototype compact et miniaturisé d'instrument de mesure basée sur la technique de Fluorescence par Faisceau d'Electrons (FFE). Cet instrument est un canon à électrons destiné à la caractérisation d'écoulements hypersoniques à basses densités en vol à bord de démonstrateurs de rentrée atmosphérique. Les paramètres à mesurer sont les températures de rotation (TR), de vibration (TV) et les densités d'espèces telles que N2 et NO pour une rentrée atmosphérique terrestre et N2, CO, CO2 pour une rentrée atmosphérique martienne. La première partie de cette étude a été consacrée à la conception du prototype de canon à électrons destiné à des mesures embarquées. Nous avons ainsi choisi les différents composants avec des spécifications techniques compatibles avec un cahier des charges typique d'un instrument spatial. Les tests de qualification et de stabilité du faisceau d'électrons ont été réalisés en caisson à vide dans un gaz statique, ce qui a permis une première validation du fonctionnement du canon à électrons de 20 keV avec un courant de faisceau de 1 mA se propageant sur une distance de 30 cm avec peu de dispersion pour des pressions inférieures au millibar. Le prototype a été testé sur différents gaz et mélanges afin de mettre au point un modèle de dispersion. Deux campagnes de mesures en soufflerie aérodynamique (CNRS MARHy et ONERA F4) ont permis de valider le bon fonctionnement du prototype sous vide et/ ou en conditions d'écoulement libre et en présence d'une onde de choc. Une analyse spectroscopique a permis de valider les codes de simulation et d'inversion de spectres et d'identifier la majeure partie des systèmes vibrationnels et rotationnels issus des transitions électroniques, vibrationnelles et rotationnelles de N2, CO et CO2 et des espèces ionisées associées.
|
58 |
A new avalanche model for solar flaresMorales, Laura F. January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
59 |
Modèle Vlasov-Maxwell pour l'étude des instabilités de type Weibel / Vlasov Maxwell model for the study of Weibel type instabilitiesInglebert, Aurélie 19 November 2012 (has links)
L'origine de champs magnétiques observés dans les plasmas de laboratoire et d'astrophysique est l'un des problèmes récurrents en physique des plasmas. À cet égard, les instabilités de type Weibel sont considérées d'une grande importance. Ces instabilités ont pour origine une anisotropie de température (instabilité de Weibel) et des moments des électrons (instabilité de filamentation de courant). L'objectif principal de cette thèse est l'étude théorique et numérique de ces instabilités dans un plasma non collisionnel en régime relativiste. Le premier aspect de ce travail est l'étude du régime non-linéaire de ces instabilités et du rôle des effets cinétiques et relativistes sur la structure des champs électromagnétiques auto-cohérents. Dans ce cadre, un problème essentiel pour les applications et la théorie, concerne l'identification et l'analyse des structures cohérentes développées spontanément dans le régime non-linéaire sur des échelles cinétiques. Un deuxième aspect du travail est le développement de techniques analytiques et numériques pour l'étude des plasmas non collisionnels. Le modèle mathématique de référence, à la base des études des plasmas chauds, est le modèle Vlasov-Maxwell, où l'équation de Vlasov (théorie des champs moyens) est couplée aux équations de Maxwell de façon auto-cohérente. Un modèle unidimensionnel, le modèle multi-faisceaux, a également été introduit durant cette thèse. Basé sur une technique de réduction en dimension, il est à la fois un modèle analytique "simple" présentant l'avantage de pouvoir résoudre une équation de Vlasov 1D pour chaque faisceau de particules, et un modèle numérique moins coûteux qu'un modèle complet / The origin of magnetic fields observed in laboratory and astrophysical plasmas is one ofthe most challenging problems in plasma physics. In this respect, the Weibel type instabilities are considered of key importance. These instabilities are caused by a temperature anisotropy (Weibel instability) and electron momentum (current filamentation instability). The main objective of this thesis is the theoretical and numerical study of these instabilities in a collisionless plasma in the relativistic regime. The first aspect of this work is to study the nonlinear regime of these instabilities and the role of kinetic and relativistic effects on the structure of self-consistent electromagnetic fields. In this context, a key problem for the theory and applications, is the identification and analysis of coherent structures developed spontaneously in the nonlinear regime of kinetic scales. A second aspect of the work is the development of analytical and numerical techniques for the study of collisionless plasmas. A mathematical model of reference is the Vlasov-Maxwell model, where the Vlasov equation (mean field theory) is coupled to the Maxwell equations in a self-consistent way. A one-dimensional model, the multi-stream model, is also introduced. Based on a dimensional reduction technique, it is both an analytical model "simple" having the advantage of being able to solve a 1D Vlasov equation for each particle beam, and a numerical model less expensive than a complete model
|
60 |
Pic-Vert : une implémentation de la méthode particulaire pour architectures multi-coeurs / Pic-Vert : a particle-in-cell implementation for multi-core architecturesBarsamian, Yann 31 October 2018 (has links)
Cette thèse a pour contexte la résolution numérique du système de Vlasov–Poisson (modèle utilisé en physique des plasmas, par exemple dans le cadre du projet ITER) par les méthodes classiques particulaires (PIC pour "Particle-in-Cell") et semi-Lagrangiennes. La contribution principale de notre thèse est une implémentation efficace de la méthode PIC pour architectures multi-coeurs, écrite dans le langage C, dont le nom est Pic-Vert. Notre implémentation (a) atteint un nombre quasi-minimal de transferts mémoires avec la mémoire principale, (b) exploite les instructions vectorielles (SIMD) pour les calculs numériques, et (c) expose une quantité suffisante de parallélisme, en mémoire partagée. Pour mettre notre travail en perspective avec l'état de l'art, nous proposons une métrique permettant de comparer différentes implémentations sur différentes architectures. Notre implémentation est 3 fois plus rapide que d'autres implémentations récentes sur la même architecture (Intel Haswell). / In this thesis, we are interested in solving the Vlasov–Poisson system of equations (useful in the domain of plasma physics, for example within the ITER project), thanks to classical Particle-in-Cell (PIC) and semi-Lagrangian methods. The main contribution of our thesis is an efficient implementation of the PIC method on multi-core architectures, written in C, called Pic-Vert. Our implementation (a) achieves close-to-minimal number of memory transfers with the main memory, (b) exploits SIMD instructions for numerical computations, and (c) exhibits a high degree of shared memory parallelism. To put our work in perspective with respect to the state-of-the-art, we propose a metric to compare the efficiency of different PIC implementations when using different multi-core architectures. Our implementation is 3 times faster than other recent implementations on the same architecture (Intel Haswell).
|
Page generated in 0.0358 seconds