• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 475
  • 109
  • 35
  • 32
  • 31
  • 18
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 5
  • 4
  • 3
  • Tagged with
  • 880
  • 375
  • 239
  • 95
  • 76
  • 70
  • 69
  • 63
  • 59
  • 59
  • 58
  • 55
  • 54
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Effects of Predation Environment and Food Availability on Somatic Growth in the Livebearing Fish <em>Brachyrhaphis rhabdophora</em> (Pisces: Poeciliidae)

Gale, Brittany Herrod 13 March 2012 (has links) (PDF)
Variation in somatic growth rates has interested biologists for decades because of the relationship between growth and other fitness-determining traits (i.e. fecundity, survival, and body size), and the corresponding effect of somatic growth on production of organisms humans use for food. The interaction between genetic variation in growth rates and environmentally induced variation in growth rates shows the pattern of growth across multiple environments (i.e. the reaction norm) that clarifies the history and potential future of evolutionary change in growth rates among populations. Theoretical predictions suggest variation in predator-induced mortality rates can influence mean growth rates and the shape of the reaction norm for growth. The adaptive growth hypothesis predicts that mean growth rates would evolve in response to environmental pressures, such as mortality rates, at different body sizes. Few studies, however, have focused on variation in reaction norms for growth in response to resource availability between high-predation and low-predation environments. We used juvenile Brachyrhaphis rhabdophora from high-predation and low-predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common-environment experiment, and we compared field somatic growth rates in juveniles from the same two environments (high-predation and low-predation). In the common-environment experiment, mean growth rates did not differ between predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and growth in mass. Fish from low-predation environments exhibited no significant variation in growth rate between high and low food amount treatments. In contrast, fish from high-predation environments exhibited wide variation in growth rates between low and high food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high-predation environment grow at a faster rate than those in a low-predation environment at the smallest sizes (comparable to sizes in the common-environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high-predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that increased risk of predation could drive variation in food availability for prey and consequent selection for plasticity.
532

Risk Perception, Alarm Call Usage, and Anti-predator Strategies in an Amazonian Primate, Pithecia rylandsi

Adams, Dara B. January 2020 (has links)
No description available.
533

Predation On The Eastern Oyster Crassostrea Virginica On Intertidal Reefs Affected By Recreational Boating

Stiner, Jennifer 01 January 2006 (has links)
Widely regarded as a keystone species and ecosystem engineer, the eastern oyster Crassostrea virginica plays a vital role in estuarine environments. Complex, three-dimensional oyster reefs act as havens for biodiversity and contribute to ecological processes. Recently, concern for this resource has arisen in Mosquito Lagoon, Florida, the southernmost limit along the Atlantic coast for undisturbed, intertidal reefs of C. virginica. Since the 1990s, intense recreational boating activity has caused atypical dead margins (mounds of disarticulated shells) to emerge on the seaward edges of oyster reefs located along major navigational channels. Once dead margins are formed, little is known about their influence on biotic composition and interactions on oyster reefs. This study focused on the affect of dead margins on: (1) mobile species biodiversity and distribution, (2) reef architecture, and (3) the affect of structural variables on predation of juvenile oysters. To determine if dead margins influenced the biodiversity of mobile species on oyster reefs, lift nets (1 m2) were deployed within Mosquito Lagoon for one year (June 2004 - June 2005). These nets (5/site) were deployed on the back-reef areas of six reefs (3 reference reefs and 3 reefs containing dead margins). To simulate reef habitat, one and a half liters of live oysters were placed within each net. Lift nets were checked monthly and surveyed for all mobile species. The resulting data were assimilated into a species inventory containing 65 species of fishes, mollusks, crustaceans, worms, and echinoderms. The two most abundant species present on reefs in Mosquito Lagoon were the big-claw snapping shrimp Alpheus heterochaelis, a filter-feeder, and the flat-back mud crab Eurypanopeus herbstii, a predator of oyster spat. Contrary to expections, analyses of community metrics showed that dead margins did not significantly affect the biodiversity of back-reef areas on oyster reefs. Modified lift nets (0.25 m2) were placed on six different oyster reefs (3 reference reefs and 3 containing dead margins) to test if dead margins affected the distribution of mobile species inhabiting oyster reefs. Nine nets were arranged to cover three separate areas of each reef: the fore-reef (3 nets), mid-reef (3 nets), and back-reef (3 nets). Half a liter of oyster shells were placed inside each net. These nets were checked weekly, for five weeks and species richness, density, and biomass were recorded. Analyses revealed that all community metrics were significantly higher on reference reefs than reefs affected with dead margins. Further, a significant drop in all three metrics was seen on the mid-reef area of affected reefs. The absence of species on this area is hypothesized to be due to a lack of water, shade, and habitat complexity. To document architectural differences, two types of transects were run along five reference reefs and five reefs with dead margins. First, quadrat transects determined the percent of live oysters, the percent of shell clusters, topographic complexity (using chain links), and the angle of shells on each reef type. Transect lines were stretched parallel to the water line and covered all three reef areas (fore-reef, mid-reef, and back-reef). The results showed reference reefs to have approximately four-fold more live oysters, approximately twice as many shell clusters, and significantly greater topographic complexity. Numbers of live oysters and shell clusters were greater on the fore-reef and back-reef areas of both reef types. Second, laser transects were used to record reef profiles and the slope of fore-reef areas. Transect lines were stretched perpendicular to the water line and every 20 cm the distance between the lagoon bottom and reef top was measured. Vertical reef profiles and fore-reef slopes were significantly different between reference reefs and reefs with dead margins. Dead margins compressed reef widths, increased center peaks, and increased slopes on the fore-reef area by two-fold. Lastly, field experiments were conducted to determine the affect of dead margins on the vulnerability of oyster spat to predation. Structural variables (e.g. shell orientation, single versus shell clusters, reef slope) were manipulated and effects on oyster mortality were observed. Three predators were tested: the blue crab Callinectes sapidus, the common mud crab Panopeus herbstii, and the Atlantic oyster drill Urosalpinx cinerea. Structural variables did not have a significant influence on oyster mortality; however, a significant difference was established between predators. Panopeus herbstii consumed the most juvenile oysters, followed by U. cinerea and then C. sapidus. Together, these findings document ecological implications of dead margins on C. virginica reefs and reinforce the urgent need for enhanced regulations and restoration. If the intensity of recreational boating remains unregulated, dead margins will continue to increase. Thus, in order to maintain the diversity and productivity of Mosquito Lagoon, it is crucial to fully understand how dead margins alter the biogenic habitat and biotic communities of oyster reefs.
534

Population Dynamics And Environmental Factors Influencing Herbs In Intact And Degraded Florida Rosemary Scrub

Stephens, Elizabeth 01 January 2013 (has links)
Species have complex and contextual relationships with their environment; both the relative contributions of life-history stages to population growth and the effect of environmental factors on each stage can be different among co-existing species. Timing and extent of reproduction, survival, and mortality determine population growth, species distributions, and assemblage patterns. I evaluate the role of habitat (intact, degraded) and microsite (shrub, leaf litter, bare sand) on population dynamics of Florida scrub herbs. Isolated overgrown shrubs and extensive bare sand areas in degraded scrub were expected to decrease seed predation, reduce competition of herbs with shrubs, and provide larger habitat for recruitment. I provide evidence that habitat and microsite variation influenced demography of five endemic and two common native species through effects on seed removal, emergence, and establishment. Habitat and species affected seed removal: endemic species with large seeds were removed in higher frequency in degraded habitat, likely by vertebrates, while species with small seeds were removed in higher frequency in intact habitat, by invertebrates. There was no evidence of differences in individual seed production between habitats for the two common species, C. fasciculata and B. angustifolia. Invertebrates were primarily responsible for seed removal of both species, although peak season of removal and microsite varied with species. Removal of seeds, emergence, and establishment increased with seed density. Matrix modeling indicated that population growth of C. fasciculata was greater in degraded habitat and greatest in litter microsites, and population growth of B. angustifolia was similar between habitats and greatest in bare sand. Contrasting responses among species to environmental factors in intact and degraded scrub indicated that natural disturbances are not ecologically equivalent to anthropogenic iv disturbances. Idiosyncratic species dynamics in common environments suggest that understanding relationships between life-history traits and environmental conditions will be required to facilitate restoration
535

SELECTIVE PREDATION DIFFERENTIALLY MODULATES ECOLOGICAL AND EVOLUTIONARY DISEASE DYNAMICS

Stephanie O Gutierrez (14216189) 06 December 2022 (has links)
<p>  </p> <p>Predators and parasites are critical, interconnected members of the community and have the potential to influence host populations. Predators, in particular, can have direct and indirect impacts on disease dynamics. By removing hosts and their parasites, predators alter both host and parasite populations and ultimately shape disease transmission. Our ability to accurately predict disease dynamics requires understanding the ecological effects of predation on prey and host densities and its role in the coevolution of host resistance and parasite virulence. While the impact of predators on disease dynamics has received considerable attention, research has focused on selective predation on infected prey. There is, however, substantial evidence that some predators avoid infected prey, preferentially attacking uninfected individuals. Such different strategies of prey selectivity by predators modulate host-parasite interactions, changing the fitness payoffs both for hosts and their parasites. I use empirical results and theoretical predictions as a framework to discuss the mechanisms by which predation for infected versus uninfected individuals can affect disease dynamics. First, by integrating hypotheses from behavioral ecology and disease ecology, I outlined novel perspectives that complement the prevailing view of selective predation of infected individuals (Chapter 1). Then, exploring short-term ecological outcomes and long-term host-parasite coevolution, I investigated patterns of <em>Daphnia dentifera</em> host population densities and host susceptibility over several generations under different types of predation pressure, including selective predation on infected and uninfected individuals (Chapter 2). Finally, building on the results of this research, I developed a high school project-based lesson plan that facilitates the instruction of the nature of science, implementing on-going ecological research in activities to improve student learning based on a constructivist approach to learning (Chapter 3). Together this research highlights the differential ecological and evolutionary outcomes of host-parasite interactions under varying community contexts.</p>
536

The Influence of Predation Environment on the Sensory Ecology of Brachyrhaphis rhabdophora

Duffy, Alexandra Grace 16 December 2022 (has links) (PDF)
Across the animal kingdom, predation is a ubiquitous and omnipresent selective agent for a variety of traits. I aimed to address gaps in our knowledge pertaining to how predation shapes animal behavior. Many species of fish naturally occur in drainages that differ in the density of predators and exhibit obvious population divergence, making them ideal study organisms to investigate predator-driven behavioral evolution. In Chapter 1, I conducted a systematic review of the literature. The purpose of this review was to determine if predation acted as a stronger or weaker selective agent on particular behavioral traits (e.g., foraging, mating, antipredator etc.) across fish. This review showed that predation does not always drive behavior in predictable ways, and that some behavioral traits more consistently diverge than others. It was evident that antipredator behaviors are extremely variable but were typically measured in response to a visual stimulus. Investigations on intraspecific variation pertaining to how fish acquire, process, and respond to information across other sensory modalities are needed. To address this, I focused on a Neotropical fish, Brachyrhaphis rhabdophora (Poeciliidae), from Costa Rica that occur in distinct predation environments. For Chapter 2, I evaluated whether males and females exhibit differential responses to conspecific chemical alarm cues. Chemical alarm cues are released when a prey is injured by a predator and are an honest indicator of risk. It was clear that B. rhabdophora responded to alarm cues, but that males and females sometimes employed different antipredator strategies depending on what predation environment they were from. However, we know that in group-living species, such as B. rhabdophora, risk information can also be acquired indirectly through social cues. There are tradeoffs associated with relying on direct vs. indirect information, and these sources of information may sometimes conflict. For Chapter 3 I considered how B. rhabdophora integrates conflicting information to elicit antipredator behavior. I again exposed fish directly to chemical alarm cues and measured how their antipredator responses changed when visually observing conflicting or reinforcing social information. I found that individuals integrated personal and social information differently based on their evolutionary history with predators. Further, we found evidence that even a single observer fish is able to influence group behavior. Finally, for Chapter 4, I evaluated sex-specific variation in brain size across predation environments. According to the "expensive-tissue hypothesis" there should only be investment in brain tissue when there is sufficient selection for enhanced cognitive abilities. Prey under elevated selection from predators should invest more in cognitive traits to enhance survival, but how sex interplays with this effect is unclear. I found that females had higher relative total brain volumes than males, but males exhibited more variation across predation environments in the relative volumes for certain brain regions. This work as a whole suggests that, yes, evolutionary history matters for a variety of sensory-related traits in B. rhabdophora.
537

Individual Differences in Activity and Responses to a Predator Attack in Juvenile Smallmouth Bass (Micropterus Dolomieui)

Smith, Kelly Lynne 25 June 2007 (has links)
No description available.
538

Peromyscus Population Dynamics and Seed Predation of Lupinus Perennis in and Near Oak Savannas of Northwest Ohio

Kappler, Rachel Hope 29 July 2009 (has links)
No description available.
539

Abiotic and biotic factors affecting size-dependent crayfish (<i>Orconectes obscurus</i>) distribution, density, and survival

Clark, Jennifer Marie 13 April 2009 (has links)
No description available.
540

Predation Mediated Carbon Turnover in Nutrient-Limited Cave Environments

Wilks, Melissa Kimberly January 2013 (has links)
No description available.

Page generated in 0.0337 seconds