31 |
Modelování predikce bankrotu stavebních podniků / Bankruptcy prediction modelling in construction businessBurdych, Filip January 2017 (has links)
This master thesis deals with bankruptcy prediction models for construction companies doing business in Czech Republic. Terms important for understanding the issue are defined in the theoretical part. In analytical part, there are five current bankruptcy prediction models tested on the analysed sample and resulted accuracy compared with original ones. On the basis of knowledges acquired, there is developed a brand-new bankruptcy prediction model.
|
32 |
Machine learning approach for crude oil price predictionAbdullah, Siti Norbaiti binti January 2014 (has links)
Crude oil prices impact the world economy and are thus of interest to economic experts and politicians. Oil price’s volatile behaviour, which has moulded today’s world economy, society and politics, has motivated and continues to excite researchers for further study. This volatile behaviour is predicted to prompt more new and interesting research challenges. In the present research, machine learning and computational intelligence utilising historical quantitative data, with the linguistic element of online news services, are used to predict crude oil prices via five different models: (1) the Hierarchical Conceptual (HC) model; (2) the Artificial Neural Network-Quantitative (ANN-Q) model; (3) the Linguistic model; (4) the Rule-based Expert model; and, finally, (5) the Hybridisation of Linguistic and Quantitative (LQ) model. First, to understand the behaviour of the crude oil price market, the HC model functions as a platform to retrieve information that explains the behaviour of the market. This is retrieved from Google News articles using the keyword “Crude oil price”. Through a systematic approach, price data are classified into categories that explain the crude oil price’s level of impact on the market. The price data classification distinguishes crucial behaviour information contained in the articles. These distinguished data features ranked hierarchically according to the level of impact and used as reference to discover the numeric data implemented in model (2). Model (2) is developed to validate the features retrieved in model (1). It introduces the Back Propagation Neural Network (BPNN) technique as an alternative to conventional techniques used for forecasting the crude oil market. The BPNN technique is proven in model (2) to have produced more accurate and competitive results. Likewise, the features retrieved from model (1) are also validated and proven to cause market volatility. In model (3), a more systematic approach is introduced to extract the features from the news corpus. This approach applies a content utilisation technique to news articles and mines news sentiments by applying a fuzzy grammar fragment extraction. To extract the features from the news articles systematically, a domain-customised ‘dictionary’ containing grammar definitions is built beforehand. These retrieved features are used as the linguistic data to predict the market’s behaviour with crude oil price. A decision tree is also produced from this model which hierarchically delineates the events (i.e., the market’s rules) that made the market volatile, and later resulted in the production of model (4). Then, model (5) is built to complement the linguistic character performed in model (3) from the numeric prediction model made in model (2). To conclude, the hybridisation of these two models and the integration of models (1) to (5) in this research imitates the execution of crude oil market’s regulators in calculating their risk of actions before executing a price hedge in the market, wherein risk calculation is based on the ‘facts’ (quantitative data) and ‘rumours’ (linguistic data) collected. The hybridisation of quantitative and linguistic data in this study has shown promising accuracy outcomes, evidenced by the optimum value of directional accuracy and the minimum value of errors obtained.
|
33 |
Characterizing the permeability of concrete mixes used in transportation applications: a neuronet approachYasarer, Hakan I. January 1900 (has links)
Master of Science / Department of Civil Engineering / Yacoub M. Najjar / Reliable and economical design of Portland Cement Concrete (PCC) pavement structural systems relies on various factors, among which is the proper characterization of the expected permeability response of the concrete mixes. Permeability is a highly important factor which strongly relates the durability of concrete structures and pavement systems to changing environmental conditions. One of the most common environmental attacks which cause the deterioration of concrete structures is the corrosion of reinforcing steel due to chloride penetration. On an annual basis, corrosion-related structural repairs typically cost millions of dollars. This durability problem has gotten widespread interest in recent years due to its incidence rate and the associated high repair costs. For this reason, material characterization is one of the best methods to reduce repair costs. To properly characterize the permeability response of PCC pavement structure, the Kansas Department of Transportation (KDOT) generally runs the Rapid Chloride Permeability test to determine the resistance of concrete to penetration of chloride ions as well as the Boil test to determine the percent voids in hardened concrete. Rapid Chloride test typically measures the number of coulombs passing through a concrete sample over a period of six hours at a concrete age of 7, 28, and 56 days. Boil Test measures the volume of permeable pore space of the concrete sample over a period of five hours at a concrete age of 7, 28, and 56 days. In this research, backpropagation Artificial Neural Network (ANN)-based and Regression-based permeability response prediction models for Rapid Chloride and Boil tests are developed by using the databases provided by KDOT in order to reduce or eliminate the duration of the testing period. Moreover, another set of ANN- and Regression-based permeability prediction models, based on mix-design parameters, are developed using datasets obtained from the literature. The backpropagation ANN learning technique proved to be an efficient methodology to produce a relatively accurate permeability response prediction models. Comparison of the prediction accuracy of the developed ANN models and regression models proved that ANN models have outperformed their counterpart regression-based models. Overall, it can be inferred that the developed ANN-Based permeability prediction models are effective and applicable in characterizing the permeability response of concrete mixes used in transportation applications.
|
34 |
A Timescale Estimating Model for Rule-Based SystemsMoseley, Charles Warren 12 1900 (has links)
The purpose of this study was to explore the subject of timescale estimating for rule-based systems. A model for estimating the timescale necessary to build rule-based systems was built and then tested in a controlled environment.
|
35 |
Acoplamento de um modelo de previsão de demanda de água a um modelo simulador em tempo real - estudo de caso: sistema adutor metropolitano de São Paulo. / Coupling a water demand prediction model to a hydraulic network model in real time operation a case study: Sao Paulo Water Mains System.Borges, Viviana Marli Nogueira de Aquino 17 November 2003 (has links)
O presente trabalho propõe uma evolução metodológica na operação do Sistema Adutor Metropolitano de São Paulo, em tempo real. Foi implantado um modelo matemático, em tempo real, de previsão de consumo de água horário para uma melhoria na performance operacional. Descrevem-se vários procedimentos de sistema de controle operacional, desde manual até totalmente automático, em sistemas de abastecimento. O sistema de abastecimento de São Paulo é classificado neste contexto. Foi analisada a possibilidade de desenvolvimento da situação atual rumo a um controle mais eficiente, através do uso de um modelo de previsão de demanda de água. O estado da arte" em modelos de previsão de consumo de água é apresentado através de uma revisão bibliográfica especifica. Foi desenvolvida uma interface entre um modelo de rede hidráulica e um modelo de previsão de demanda de água existente, ambos utilizando dados operacionais, obtidos em tempo real de um sistema de telemetria. A interface foi testada em um estudo de caso do Sistema Adutor de São Paulo. Com a utilização de um modelo de previsão, concluiu-se que é possível estabelecer regras operacionais mais eficientes. Essa eficiência é demonstrada pela redução do número de mudanças de posição de válvula e estado de bombas, bem como é observada a redução do custo de energia elétrica (reduzindo o bombeamento em horário de maior custo). Os benefícios obtidos do uso conjunto do modelo simulador hidráulico e do modelo de previsão de demanda não podem ser considerados como o ótimo global. Seria necessário dispor de um modelo de otimização (programação automática). De qualquer forma, foi concluído que o investimento na implementação desses dois modelos é extremamente atrativa. / This work proposes a methodological evolution of a real time water distribution system operation applied to the Water Mains System of Metropolitan Region of Sao Paulo. It was settled a mathematical model in real time, to forecast hourly water consumptions, intending to increase operational performance. Several operational control procedures of water systems were described, since manual ones until total automatic ones. Sao Paulo system is classified into this concept. The possibility of development from the present status toward a more efficient control was analyzed, through the use of a water demand prediction model. State-of-art of water demand models is presented, through a specific literature review. An interface between a hydraulic network model and an existing water demand prediction model were developed both of them using operational data, obtained in real time by a telemetric system. The interface was tested in a case study of Sao Paulo Water Mains System. One concludes that through the use of the prediction model, it was possible to make more efficient operational schedules. This efficiency is demonstrated by the reduction in number of valve positions changes and in pump status changes, as well as a decrease in energy costs could be observed ( reducing pump operations in hours of more expensive costs). Benefits obtained by the conjunctive use of the hydraulic simulation model and the water demand prediction model can not be admitted as the global optimum. It would be necessary to make available an optimization model (automatic scheduler). However it was concluded that investment in these two models implementations is extremely attractive.
|
36 |
BUILDING ENVIRONMENTAL PREDICTION MODEL FOR SWINE GESTATION BARNSXiaoyu Feng (5929670) 12 February 2019 (has links)
There are over six
million gestation sows in the United States and most of them are kept in
gestation stalls. The inside environment of large livestock buildings requires
advanced environmental control systems to maintain animal health and optimize
animal production efficiency. The ventilation rate, inside temperature, and
supplemental heating and cooling are the main control variables to manage the
barn environment. About 144 barn-months of unpublished thermal data were
obtained from six commercial gestation houses by the National Air Emission
Monitoring Study (NAEMS). The data from this site was reviewed, corrected, and
re-analyzed to improve its quality, completion, accuracy and reliability using
the methods of comparison between onsite measurements and data collected from
nearest weather stations, introducing corrected models to adjust the onsite
data, substituting invalid and missing onsite data by weather station data and
other improved methodologies. The data completeness for solar radiation,
relative humidity, atmospheric pressure, outside temperature, and wind speed
and direction were increased by 5.6 to 17.9%. The six NAEMS gestation barns
were used to test and validate a building environmental prediction model (BEPM)
based on known thermodynamic and heat transfer principles for simultaneously
predicting inside temperatures and ventilation rates. The BEPM inputs included
the weather, the building dimensions and materials, geographical location and
building orientation, and sow herd characteristics. Predictions of ventilation
rates and inside temperatures followed the expected yearly patterns as the
measured NAEMS data. Four combinations of heat production rate and inside
temperature submodel combinations CIGR-T, CIGR-T<sup>2</sup>, US-T, and US-T<sup>2</sup>
were compared and evaluated based on the root-mean-square-deviation and fitness
tests to determine the best submodel combination. The average predicted and measured means of ventilation rate were 24.8
and 24.1 m<sup>3</sup>/s for NAEMS Site IA4B, 27.5 and 24.9 m<sup>3</sup>/s for
Site NC4B, and 24.6 and 23.9 m<sup>3</sup>/s for Site OK4B, respectively. The
average predicted and measured means of inside temperature were 20.3 and 19.7°C
for IA4B, 23.3 and 22.9°C for NC4B, and 20.8 and 20.9°C for OK4B, respectively,
based on their top performing submodel combinations. The overall optimal combination of four different submodels
was determined to be the CIGR-T<sup>2</sup> submodel, which consisted of the CIGR
International Commission of Agricultural and Biosystems Engineering heat
production rate equations for sows and a second order polynomial regression of
inside versus outside temperatures in the temperature control region between the
minimum and maximum temperature setpoints. The CIGR-T<sup>2</sup> submodel simultaneously
predicted the daily mean ventilation rate and daily mean inside temperature
with good performance. The average RMSDs of the
three sites for ventilation rate and inside temperature were 7.05 m<sup>3</sup>/s
and 2.78°C, respectively. Sensitivity tests simulated
based on the optimal BEPM (CIGR-T<sup>2</sup>) showed that annual total energy
costs including electricity for powering fans and supplemental heat were
influenced significantly by the minimum inside temperature setpoint, the
thickness of ceiling insulation, and the minimum ventilation rate. This BEPM can
be used for energy usage predictions, cooling and heating systems analysis and
design, and as an important module of process-based gas emission models. It can
be expanded to other livestock species (swine farrowing and finishing, egg
laying operations, freestall dairy barns, etc.) by changing the heat production
rate prediction submodel.
|
37 |
Acoplamento de um modelo de previsão de demanda de água a um modelo simulador em tempo real - estudo de caso: sistema adutor metropolitano de São Paulo. / Coupling a water demand prediction model to a hydraulic network model in real time operation a case study: Sao Paulo Water Mains System.Viviana Marli Nogueira de Aquino Borges 17 November 2003 (has links)
O presente trabalho propõe uma evolução metodológica na operação do Sistema Adutor Metropolitano de São Paulo, em tempo real. Foi implantado um modelo matemático, em tempo real, de previsão de consumo de água horário para uma melhoria na performance operacional. Descrevem-se vários procedimentos de sistema de controle operacional, desde manual até totalmente automático, em sistemas de abastecimento. O sistema de abastecimento de São Paulo é classificado neste contexto. Foi analisada a possibilidade de desenvolvimento da situação atual rumo a um controle mais eficiente, através do uso de um modelo de previsão de demanda de água. O estado da arte em modelos de previsão de consumo de água é apresentado através de uma revisão bibliográfica especifica. Foi desenvolvida uma interface entre um modelo de rede hidráulica e um modelo de previsão de demanda de água existente, ambos utilizando dados operacionais, obtidos em tempo real de um sistema de telemetria. A interface foi testada em um estudo de caso do Sistema Adutor de São Paulo. Com a utilização de um modelo de previsão, concluiu-se que é possível estabelecer regras operacionais mais eficientes. Essa eficiência é demonstrada pela redução do número de mudanças de posição de válvula e estado de bombas, bem como é observada a redução do custo de energia elétrica (reduzindo o bombeamento em horário de maior custo). Os benefícios obtidos do uso conjunto do modelo simulador hidráulico e do modelo de previsão de demanda não podem ser considerados como o ótimo global. Seria necessário dispor de um modelo de otimização (programação automática). De qualquer forma, foi concluído que o investimento na implementação desses dois modelos é extremamente atrativa. / This work proposes a methodological evolution of a real time water distribution system operation applied to the Water Mains System of Metropolitan Region of Sao Paulo. It was settled a mathematical model in real time, to forecast hourly water consumptions, intending to increase operational performance. Several operational control procedures of water systems were described, since manual ones until total automatic ones. Sao Paulo system is classified into this concept. The possibility of development from the present status toward a more efficient control was analyzed, through the use of a water demand prediction model. State-of-art of water demand models is presented, through a specific literature review. An interface between a hydraulic network model and an existing water demand prediction model were developed both of them using operational data, obtained in real time by a telemetric system. The interface was tested in a case study of Sao Paulo Water Mains System. One concludes that through the use of the prediction model, it was possible to make more efficient operational schedules. This efficiency is demonstrated by the reduction in number of valve positions changes and in pump status changes, as well as a decrease in energy costs could be observed ( reducing pump operations in hours of more expensive costs). Benefits obtained by the conjunctive use of the hydraulic simulation model and the water demand prediction model can not be admitted as the global optimum. It would be necessary to make available an optimization model (automatic scheduler). However it was concluded that investment in these two models implementations is extremely attractive.
|
38 |
Modelo de previsão de acidentes rodoviários envolvendo motocicletasMânica, André Geraldi January 2007 (has links)
Este trabalho apresenta um modelo de previsão de acidentes com a participação de motocicletas que foi desenvolvido a partir do método da análise de regressão estatística adaptado às particularidades técnicas das rodovias do Estado do Rio Grande do Sul. O objetivo do trabalho é gerar uma ferramenta que possibilite prever o número de acidentes a partir da combinação do nível de exposição veicular associada com os prováveis fatores de risco deste peculiar ambiente. Com esta finalidade, é confrontado o número de acidentes observados com relação às características técnicas das rodovias investigadas com o intuito de avaliar os fatores de risco. Nove variáveis de controle representando atributos físicos, funcionais, econômicos e legais das rodovias foram analisadas sob diversos parâmetros tais como: largura da plataforma, sinuosidade; inclinação, intersecções, condição do pavimento, tráfego de veículos, tráfego de caminhões, urbanização e dispositivos de controle de tráfego. A aplicação do método estatístico permite classificar as rodovias mais importantes quanto ao nível de acidentes; identificar, mensurar e avaliar os fatores de risco; estimar a probabilidade média para a realização do evento sinistro e simular, em nível de projeto, a ocorrência futura de acidentes. Uma vez processado, o modelo obteve um fator de explicação (R2) para os dados em torno de 96%. As variáveis de controle que apresentaram maior efeito na variável de resposta foram obtidas através do tráfego de veículos seguido da largura da plataforma da rodovia. Após a análise do modelo, as rodovias com maior fator de propensão para acidentes foram a ERS734 sendo seguida pela ERS118 e ERS130. Os resultados que foram obtidos indicaram que a frota de motocicletas do Estado do Rio Grande do Sul - Brasil apresenta um risco de envolvimento em acidentes duas vezes maior que aquela incorrida pela frota dos Estados Unido e três vezes maior que aquela apresentada pela frota do Reino Unido. / This article presents an accident prediction model with the participation of motorcycles, developed by statistical regression analysis adapted to the technical peculiarities of the roads of the state of Rio Grande do Sul, Brazil. The aim of the model is to generate a tool to allow predicting the number of accidents based on the combination of vehicle exposure level with possible risk factors. The number of accidents observed is compared with road technical characteristics, aiming at evaluating risk factors. Nine control variables, representing physical, functional, economical and legal road attributes, were analyzed as to different parameters, such as platform width; sinuosity; inclination; junctions ; pavement condition; vehicle traffic; truck traffic; urbanization; and traffic control devices. The application of the statistical method allows the classification of the most important roads in terms of accident level; to identify, measure, and evaluate risk factors; to estimate mean accident probability; and to simulate, at project level, the future occurrence of accidents. Once processed, the model obtained an explanation factor (R2) for the data around 96%. Vehicle traffic, followed by highway platform width had the highest effect on the response variable. After being analyzed by the model, ERS734, followed by ERS118, and ERS130 presented the highest accident probability factor. The results obtained indicated that the risk of motorcycles being involved in accidents in the state of Rio Grande do Sul is twice as high as in the USA, and three times higher than in the United Kingdom.
|
39 |
Leveraged Buyouts: The Predictive Power of Target Firm CharacteristicsJiang, Yutao (James) 01 January 2019 (has links)
This paper utilizes a hazard model to predict the probability of leveraged buyout transactions for public firms. Rather than testing specific hypotheses, this paper incorporates all plausible predictors identified in existing literature to better delineate the effects of different characteristics. Largely confirming past results, I find that LBO transactions are more likely to occur for companies with more stable cash flows, less market visibility, lower market valuation, lower ownership concentration and lower costs of financial distress. By including LBO transactions from 1980 to September 2018, I find preliminary evidence that since the financial crisis of 2008 – 2009, private equity firms have modified their selection criteria when sourcing LBO deal targets.
|
40 |
Development of Life Prediction Models for Rolling Contact Wear in Ceramic and Steel Ball Bearings.Huq, Fazul, dpmeng@bigpond.com January 2007 (has links)
The potential for significant performance increases, using ceramic materials in un-lubricated rolling element bearing applications, has been the subject of research over the past two decades. Practical advantages over steel include increased ability to withstand high loads, severe environments and high speeds. However, widespread acceptance has been limited by the inability to predict wear life for ceramic bearing applications. In this thesis, the rolling contact wear of 52100 bearing steel and Over-aged Magnesia-Partially-Stabilised Zirconia (OA-Mg-PSZ) ceramic are examined using a newly developed rolling contact wear test rig. The new wear test rig simulates the system geometry of an un-lubricated hybrid (ceramic and steel) ball bearing. The new wear test rig is versatile in that it allows low cost samples to be utilised resulting in a larger number of samples that can be tested. Wear samples of 52100 bearing steel and OA-Mg-PSZ produced by the new wear test rig were examined for mass loss and wear depth. The wear behavior of both the steel and ceramic material showed a dependence on operating variables time and load. Load was varied between 300N to 790N. Typical mass loss after 1 hour of testing 52100 bearing steel at 790N was 0.03 grams as compared to OA-Mg-PSZ which was 0.001 grams. The rolling contact wear of the OA-Mg-PSZ was an order of magnitude lower than that of the 52100 bearing steel. The wear mechanism for 52100 bearing steel was typical of plastic deformation and shearing near and below the surface of rolling contact. Once cracks extend to reach the surface, thin flat like sheets are produced. In OA-Mg-PSZ the wear mechanism initially is that of plastic deformation on the scale of the surface asperities with asperity polishing occurring followed by lateral cracks and fatigue spallation. Results obtained using the new rolling contact wear test rig led to the establishment of a new equation for wear modeling of 52100 bearing steel and OA-Mg-PSZ ceramic materials.
|
Page generated in 0.0428 seconds