Spelling suggestions: "subject:"packaging"" "subject:"ackaging""
271 |
Design and fabrication of a flip-chip-on-chip multi-chip module with 3D packaging structure and through-silicon-via for underfill dispensing /Tsui, Yat Kit. January 2004 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 116-127). Also available in electronic version. Access restricted to campus users.
|
272 |
Design for reliability in microoptelectromechanical systems (MOEMS)Fasoro, Abiodun Adekunle. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.
|
273 |
Processing of NITI reinforced adaptive solder for electronic packaging /Wright, William L. January 2004 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, March 2004. / Thesis advisor(s): Indranath Dutta. Includes bibliographical references (p. 45-47). Also available online.
|
274 |
Fundamental study of underfill void formation in flip chip assemblyLee, Sangil. January 2009 (has links)
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Baldwin, Daniel; Committee Member: Colton, Jonathan; Committee Member: Ghiaasiaan, Mostafa; Committee Member: Moon, Jack; Committee Member: Tummala, Rao. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
275 |
Underfill adhesion characteristics, residual stresses and analysis of thermal stresses in flip chip packages /Sham, Man-Lung. January 2003 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references. Also available in electronic version. Access restricted to campus users.
|
276 |
Improvements for chip-chip interconnects and MEMS packaging through MEMS materials and processing researchUzunlar, Erdal 08 June 2015 (has links)
Improvements for Chip-Chip Interconnects and MEMS Packaging Through
Materials and Processing Research
Erdal Uzunlar
129 Pages
Directed by Dr. Paul A. Kohl
The work presented in this dissertation focuses on improvements for ever-evolving modern microelectronic technology. Specifically, three topics were investigated in this work: electroless copper deposition on printed wiring boards (PWBs), polymer-based air-gap microelectromechanical systems (MEMS) packaging technology, and thermal stability enhancement in sacrificial polymers, such as poly(propylene carbonate) (PPC). In the electroless copper deposition study, Ag-based catalysts were identified as a low-cost and equally active alternative to expensive Pd-based catalysts. Hot H2SO4 treatment of PWBs was found as a non-roughening surface treatment method to minimize electrical losses. In MEMS packaging study, a sacrificial polymer-based air-gap packaging technique was improved in terms of identification and simplification of air-gap formation process options, optimization of thermal treatment steps, assessing air-gap formation performance, and analyzing the chemical composition of residue. It was found that non-photosensitive PPC leaves less residue, and creates more reliable air-gaps. The mechanical strength of air-gaps was found to come from residual stress in benzocyclobutene (BCB) caps. In thermal stability of PPC study, the mechanism of thermal stability increase on copper (Cu) surfaces was found as the complex formation between Cu(I) and iodonium of the photoacid generator (PAG), leading to hindrance of acid formation by PAG and restriction of acid-catalyzed decomposition of PPC.
|
277 |
Oxygen scavenging styrene-butadiene-styrene block copolymer films for barrier applicationsTung, Kevin 11 September 2013 (has links)
This dissertation discusses the oxidation behavior of reactive membranes that were produced by solution casting and by melt extrusion. These films, containing styrene-butadiene-styrene (SBS) block copolymer that undergoes catalytic oxidation, are of potential use as an oxygen scavenging polymer (OSP) for barrier applications. A thin film kinetic model was developed to ascertain reaction parameters that were used to describe thick film oxidation behavior. Ultimately complex structures containing these scavengers need to be produced via melt-extrusion. Therefore, processing conditions were established to ensure that melt-processed films have the same oxidation kinetics and capacity as those prepared by solution casting. Blends containing a non-reactive styrene phase and an oxygen-scavenging SBS phase were extruded and, by uptake and permeation experiments, their oxidation behaviors were monitored. The flux behavior and time lag extension as a function of oxygen pressure, film thickness, SBS scavenger and photoinitator contents were measured and compared to the theoretical model. The permeation behavior of the reactive blend films containing SBS showed that time lags can be extended via an oxidative mechanism and barrier properties be improved compared to traditional packaging membrane of native polystyrene. / text
|
278 |
Photocrosslinkable nonlinear optical polymers and directly-patternable polyimide dielectricsBell, William Kenneth, III 15 September 2015 (has links)
The development of high-efficiency nonlinear optical (NLO) polymers has opened up many opportunities in the field of electro-optics. However, current NLO polymers do not meet stability requirements for semiconductor integration. In an effort to improve this, we examined the effects of crosslinking following electric field poling. A series of photocrosslinkable polymers bearing side chain chromophores was synthesized, poled and evaluated on the basis of the thermal stability of Second Harmonic Generation. Photoinitiation allowed for control of the onset of curing. Crosslinking was monitored by FTIR and optimal conversion was achieved by applying a slow temperature ramp during exposure. The ultimate stability of the poled polymers was directly related to the number of crosslinking substituents attached to the chromophore pendant group. With two reactive groups per chromophore significant SHG was retained at temperatures beyond the polymer Tg.
In integrated circuit packaging there is a need for directly-patternable polymers of low dielectric constant. Bridging the gap between the high-value silicon chip and circuit board is a substrate comprising alternating layers of metal conductor and polymer dielectric. PMDA-ODA, an aromatic polyimide, meets many of the requirements for integration and can be patterned using a photobase generator (PBG). Due to absorbance by the PMDA-ODA precursor, this PBG must have activity at visible wavelengths. Several oxime urethanes were synthesized and evaluated as candidate long wavelength PBG. These compounds exhibit clean photochemistry and high visible light sensitivity. Unfortunately, carbamate thermal stability is insufficient for patterning PMDA-ODA.
For improved material properties, PMDA-TFMB, a fluorinated polyimide, was also evaluated. Importantly, the polymer precursor is sufficiently transparent to employ thermally-stable near-UV photobases. With photobase, 2.5 micron features were resolved in PMDA-TFMB. An ancillary benefit of this methodology is reduced cure temperature (~200 °C), a traditional drawback of polyimides. This material demonstrates a dielectric constant near 3 and a thermal expansion coefficient (CTE) of approximately 6 ppm/°C in-plane. Through-plane thermal expansion is somewhat problematic, with a CTE of approximately 160 ppm/°C, and will likely require a nanoparticle composite strategy. However, this combination of material and lithographic properties make PMDA-TFMB a promising candidate for this application. / text
|
279 |
Sorption and transport of gases and organic vapors in poly(ethylene terephthalate)Dhoot, Sushil Naresh 28 August 2008 (has links)
Not available / text
|
280 |
Thermal deformation of electronic packages and packaging effect on reliability for copper/low-k interconnect structuresWang, Guotao 28 August 2008 (has links)
Not available / text
|
Page generated in 0.0628 seconds