Spelling suggestions: "subject:"dac"" "subject:"hdac""
1 |
Identification of target genes of SMAD4 signaling network inhibit pancreatic tumor metastasis and chemoresistanceHuang, Sz-yang 08 July 2010 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is one of the most insidious forms of cancer whose incidence nearly equals its death rate. Despite extensive research studies, no effective therapeutic approaches for diminishing the morbidity associated with this disease are available. PDAC is characterized by activating Kras mutations and inactivation of Ink4a and the p53-Arf pathway in virtually all cases, while SMAD4¡Xa central regulator of Transforming growth factor-beta (TGF-£]) signaling¡Xis inactivated in 55% of PDAC. Our overall goal is to understand how perturbations in the inactivation of SMAD4 pathway contribute to the late stages of PDAC pathogenesis, and to elucidate the role of SMAD4 inactivation on the conversion of a benign form of the cancer to a more aggressive metastatic form. To address this important topic in cancer biology, we have devised a strategy to develop model cell lines to dissect the role of SMAD4 defect in PDAC cell lines and the potential synergistic effects of hypoxia and/or TGF-£]1 upon SMAD4 inactivation in their metastatic properties. Experiment results showed SMAD4 restored in PDAC model cell lines were down regulate HIF-1£\, VEGF, FGF10 and FGFR2 genes expression level, and also inhibited migration, chemoresistance and angiogenesis of cancer cells. We hypothesize that these effects are due to SMAD4 suppresses some cancer genes in PDAC. Further detailed investigations are also needed to fully elucidate the detail mechanisms for our findings here therefore, the future works of this study will go step on looking for those important downstream effect genes regulated by Smad4 protein in PDAC cells and try to find out the connection of all the dependence proteins.
|
2 |
Neuropilin-2 in pancreatic cancer and Semaphorin-3F as a treatmentLi, Xiaoran 18 June 2016 (has links)
INTRODUCTION: Pancreatic cancer remains the fourth leading cause of cancer-related deaths with approximately 5% five-year survival and 3 months of median survival. The survival rate of pancreatic cancer has not improved substantially over the past 40 years. Therefore, a novel potential treatment for pancreatic cancer is urgently needed. Recently, a cell surface receptor, Neuropilin-2 (NRP-2), was found to competitively bind either stimulatory angiogenic ligands such as vascular endothelial growth factor-A (VEGFA) or inhibitory class 3 Semaphorin-3F (SEMA3F) ligands. Knowing that angiogenesis is necessary for pancreatic tumor growth, elucidating the role of NRP2 in angiogenesis may lead to curative treatment for pancreatic cancer.
OBJECTIVES: Previously, NRP-2 has been shown to be expressed by human cells of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal forms of pancreatic cancer. Additionally, knockdown of NRP-2 in vivo inhibited PDAC tumorigenesis. In our current study, we aimed to investigate the role of endothelial cell derived-Nrp-2 in PDAC-associated tumor angiogenesis. Furthermore, we studied the efficacy of SEMA3F as a potential inhibitory factor for pancreatic tumor growth.
METHODS: To investigate the role of Nrp-2 in tumor-derived angiogenesis, we injected Panc0H7 cells, a C57BL/6 syngeneic mouse PDAC cell line, orthotopically into the pancreas of Nrp-2+/+, Nrp-2+/-, and Nrp-2 -/- mice and compared tumor growth and angiogenesis. We next injected control adenovirus (Ad-control) or SEMA3F adenovirus (Ad-3F), which actively encodes SEMA3F in vivo, followed by orthotopic injection of Panc0H7 cells into C57BL/6 mice three days later. We studied the efficacy of SEMA3F as a potential treatment for pancreatic cancer by comparing the tumor growth and tumor-associated angiogenesis of the two groups of adenovirus-treated mice.
RESULTS: Our results showed that Panc0H7 tumors were significantly smaller in Nrp-2-deficient mice as compared to that of Nrp-2-intact mice. Furthermore, tumor microvessel density was significantly lower in Nrp-2-knockout mice compared to wild-type mice, while there was no difference in tumor weight or angiogenesis between wild-type and Nrp2 heterozygous mice. Our results also demonstrated that pancreatic tumors harvested from SEMA3F-treated mice were significantly smaller than the tumors from the control-treated mice. Furthermore, micrometastases were detected in the livers of mice treated with Ad-control but not in the Ad-3F group.
CONCLUSIONS: Taken together, our results suggested that NRP2 might facilitate in vivo angiogenesis and tumor growth. Furthermore, SEMA3F could be a potential treatment to inhibit the growth and metastases of pancreatic tumors.
|
3 |
The Stem Cell Marker Nestin is Critical for TGF beta1- Mediated Tumor Progression in Pancreatic CancerSu, Huei-Ting 25 June 2012 (has links)
Stem cell marker Nestin is an intermediate filament protein that plays an important role in cell integrity, migration and differentiation. Nestin expression occurs in approximately one-third of pancreatic ductal adenocarcinoma (PDAC) cases, and its expression positively correlates with tumor stage and peripancreatic invasion. Little is known of the mechanisms by which Nestin influences PDAC progression. We showed that Nestin overexpression in PDAC cells increased cell motility and drove phenotypic changes associated with the epithelial-mesenchymal transition in vitro, conversely, knockdown of endogenous Nestin expression reduced the migration rate and cells reverted to a more epithelial phenotype. In vivo mice studies showed that knockdown of Nestin significantly reduced tumor incidence and volume in xenografts. Expression of the Nestin protein was associated with Smad4 status in PDAC cells, hence Nestin expression might be regulated by the TGF-b1/SMAD4 pathway in PDAC. We examined Nestin expression after TGF-b1 treatment in human pancreatic cancer PANC-1, and PANC-1 shSmad4 cells. The TGF-b/SMAD pathway induced Nestin protein expression in PDAC cells through Smad4 in a dependent manner. Moreover, increased Nestin expression caused a positive feedback loop in the TGFb/SMAD signaling system.
Finally, we demonstrated that 2 anti-microtubule inhibitors, Cytochalasin D (CD) and Withaferin A (WFA), exhibited anti-Nestin activity; these inhibitors might be potential anti-metastatic drugs. Our findings uncovered a novel role of Nestin in regulating TGF-b1-induced EMT. Anti-Nestin therapeutics are under development as a potential treatment for PDAC metastasis.
|
4 |
Integrative Click Chemistry for Tuning Physicochemical Properties of Cancer Cell-Laden HydrogelsJohnson, Hunter C. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The pancreas is a vital organ that secretes key metabolic hormones and digestive
enzymes. In pancreatic ductal adenocarcinoma (PDAC), one of the leading causes
of cancer-related death in the world, limited advances in diagnosis or therapies have
been made over decades. Key features of PDAC progression include an elevated
matrix sti ness and an increased deposition of extracellular matrices (ECM), such as
hyaluronic acid (HA). Understanding how cells interact with components in the tumor
microenvironment (TME) as PDAC progresses can assist in developing diagnostic
tools and therapeutic treatment options. In recent years, hydrogels have proven to
be an excellent platform for studying cell-cell and cell-matrix interactions. Utilizing
chemically modi ed and naturally derived materials, hydrogel networks can be formed
to encompass not only the components, but also the physicochemical properties of
the dynamic TME. In this work, a dynamic hydrogel system that integrates multiple
click chemistries was developed for tuning matrix physicochemical properties in a
manner similar to the temporally increased matrix sti ness and depositions of HA.
Subsequently, these dynamic hydrogels were used to investigate how matrix sti ening
and increased HA presentation might a ect survival of PDAC cells and their response
to chemotherapeutics.
|
5 |
Implication de CXCR3 dans la progression tumorale : une nouvelle cible thérapeutique / Implication of CXCR3 in tumor progression : a new therapeutical targetBoyé, Kevin 05 December 2016 (has links)
CXCR3 appartient à la famille des récepteurs couplés aux protéines G. Avec ses ligands, les chimiokines CXC, CXCR3 régule diverses fonctions biologiques et participe à de nombreux processus comme l’angiogenèse, l’inflammation et le cancer. La complexité de CXCR3 provient de son épissage alternatif qui conduit à des isoformes distinctes. CXCR3-A est reconnu pour promouvoir la prolifération, la survie et la migration cellulaire tandis que CXCR3-B induit des signaux inhibiteurs de la croissance cellulaire.Le modèle cellulaire U87, dérivé d’un glioblastome humain, a été utilisé afin d’étudier les mécanismes moléculaires régulant l'activité et le trafic des isoformes de CXCR3 dans les cellules tumorales. CXCR3 est le récepteur fonctionnel de l’activité angiostatique de CXCL4 et son variant CXCL4L1. En fonction de leur état d'oligomérisation, ces deux chimiokines ont des interactions préférentielles avec les isoformes de CXCR3. L’activation de CXCR3-A conduit à un important changement conformationnel et induit des voies de signalisation pro-migratoires. L’étude du trafic souligne l’importance de la clathrine et du réseau Trans-Golgi dans l’internalisation et le recyclage de CXCR3-A. Pour la première fois, LRP-1 a été identifié comme nouveau partenaire de CXCR3-A. LRP1 n’est pas seulement reconnu comme un récepteur de l’endocytose mais également comme une protéine de la signalisation. LRP1 interagit avec CXCR3-A au niveau extracellulaire et régule sa conformation, son trafic et son activité pro-tumorale.L'utilisation de modèles cellulaires d'adénocarcinome pancréatique a permis de caractériser CXCL4L1 comme facteur pro-tumoral, via l’activation de CXCR3-A dans les cellules tumorales. CXCL4L1 apparait pour la première fois comme un biomarqueur important dans la progression du cancer pancréatique.Dans les différents modèles, les signalisations chimiokines CXC/CXCR3-A induisent une augmentation des propriétés invasives tumorales. Au niveau moléculaire, l’association de CXCR3 à diverses protéines (ligands et partenaires) est essentielle pour réguler les fonctions biologiques de la cellule tumorale.Les nanoparticules sont désormais connues comme une nouvelle génération d'anticorps thérapeutiques présentant de nombreux avantages par rapport aux anticorps conventionnels. Ainsi, le développement de nanoparticules associées à des inhibiteurs de CXCR3 apparaît comme une nouvelle stratégie thérapeutique anti-tumorale prometteuse. / CXCR3 belongs to the G-protein-coupled receptors family. With its ligands, the CXC chemokines, CXCR3 regulates several biological functions and plays important roles in angiogenesis, inflammation and cancer. The interaction with CXCR3 is rather complex due to the presence of distinct spliced isoforms. CXCR3-A is known to promote cell proliferation, survival, and migration while CXCR3-B leads to cell growth inhibition.The human glioblastoma cell model, U87, was used to study the molecular mechanisms regulating the activity and trafficking of CXCR3 isoforms in tumor cells. CXCR3 has been reported as the functional receptor for the angiostatic activity of CXCL4 and its variant CXCL4L1. Depending on their oligomerization status, these two chemokines present preferential interaction with CXCR3 isoforms. Activation of CXCR3-A leads to an important conformational change and induces pro-migratory signaling pathways. Studies on the vesicular trafficking highlight the importance of the clathrin and the Trans-Golgi network for both internalization and recycling of CXCR3-A. For the first time, LRP-1 is identified as a new partner of CXCR3-A. LRP1 is not only recognized as an endocytic receptor but also as a signaling protein. LRP1 interacts with CXCR3-A via its extracellular α subunit and regulates CXCR3-A conformation, trafficking and pro-tumoral activity.Pancreatic ductal adenocarcinoma cell models were used to characterize CXCL4L1 as a pro-tumoral factor that activates CXCR3-A in tumor cells. For the first time, CXCL4L1 appears as an important biomarker for pancreatic cancer progression.In the different cell models, signaling pathways of CXC chemokine/CXCR3-A lead to an increase in tumor invasive properties. At the molecular level, the association of CXCR3 with various proteins (ligands and partners) is essential to regulate tumor cell biological functions.The nanoparticles are now known as a new generation of therapeutic antibodies with many advantages over conventional antibodies. Thus, the development of nanoparticles associated to CXCR3 inhibitors appears as a new promising pharmacological targeted strategy to treat cancer.
|
6 |
CT Textural Analysis (CTTA) of Metastatic Treatment‐Resistant Pancreatic Adenocarcinoma (PDAC): Identifying Biomarkers for Genetic Instability and Overall SurvivalCampbell, David 23 March 2016 (has links)
A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine. / Metastatic, treatment‐resistant pancreatic ductal adenocarcinoma (PDAC) is a rapidly fatal disease that typically carries a bleak prognosis. Contrast‐enhanced CT is the current standard of care tool for imaging evaluation, and repeat imaging is routinely performed in clinical trials. The availability of these imaging data render them exploitable for further analysis. CT texural analysis (CTTA), a quantitative tool for examining a region of interest on CT and generating statistical parameters based on gray‐level pixel data, is powerful technique that has been studied in other cancers and shown to correlate with features such as tumor grade, stage, and prognosis. However, the application of CTTA to PDAC has not been studied. Given the paucity of diagnostic tests to guide therapy, validated CTTA biomarkers could be immensely useful. Identifying PDAC variants that have a relative deficit in DNA repair might allow these cancers to be treated with targeted cytotoxic regimens sooner. Additionally, identifying prognostic CTTA parameters would be useful in gauging the severity of disease. We sought to perform quantitative textural analysis on CT imaging from a clinical trial cohort of patients with metastatic, treatment‐resistant PDAC. We aimed to correlate CTTA features to molecular profiling results (copy number variations obtained by array CGH) and clinical features (overall survival). Metastatic tumor sites from patients with treatment‐resistant PDAC were biopsied and molecularly profiled. Intrachromosal copy number were assessed by CGH in tumor specimens, and patients were treated based on these individual molecular profiling results. Pre‐biopsy portal‐venous phase and non‐contrast CT scans were obtained for retrospective analysis (n=15). CTTA was performed by drawing regions of interest around the primary pancreas adenocarcinoma and the normal pancreas tissue. CTTA parameters including mean positive pixels, entropy, kurtosis, and skewness were derived using the TexRAD platform at texture filtering densities of 0, 2, 3, 4, 5, and 6 pixels. CTTA values were then compared to intrachromosomal copy number variation (CNV) per tumor and overall survival (OS) post treatment using a Spearman’s rank correlation coefficient. Additional linear regression analysis was performed for positive correlations, and a Kaplan‐Meier statistic was generated for OS using median CTTA entropy. Multivariate analyses for CNV and OS were also performed. CNV were negatively correlated with the kurtosis value of the primary tumor mass using medium texture filtering (p=0.034, n=15). Linear regression revealed a significant negative correlation between kurtosis and CNV (p=0.038). Secondary analysis of the normal pancreas using coarse texture filtering revealed that increasing entropy was associated with decreased OS (p=0.0014, n=12). Using median entropy as a cutoff value (median: 4.165), median OS was greater in the entropy < 4.165 group versus the entropy > 4.165 group (179 days v 43 days; 95% CI 73.137 – 166.87; p=0.004, n=12). This exploratory study with admittedly limited sample size raises interesting questions about the use of CTTA parameters as diagnostic tools and/or biopsy adjuncts in assessing PDAC susceptibility to commercially available cytotoxics. Secondarily, entropy, a potential marker of heterogeneity and inflammation in the normal pancreas, represents an intriguing possibility for gauging prognosis.
|
7 |
DEVELOPMENT OF A MICROFLUIDIC MODEL OF A PANCREATIC ACINUSStephanie Michele Venis (7022999) 16 August 2019
Pancreatic Ductal
Adenocarcinoma (PDAC) continues to have a dismally low survival rate due to
late diagnosis and poor treatment options. Therefore, there is a need to
understand the early stages and progression of the disease. PDAC is known to
have two types of cells of origin: ductal cells or acinar cells. Since
acinar-derived PDAC is thought to be the more malignant of the two, it was
chosen as the focus of this work. Most studies of acinar cells as they relate
to PDAC are accomplished by using animal models such as genetically engineered
mouse models. While this method yields a large amount of insight into the
progression of the disease and the role of specific genes, it has the drawbacks
of being very time and resource intensive. The quicker and less costly
alternative is <i>in vitro </i>culture.
Specifically, here we have developed a microfluidic model which can incorporate
a key aspect of the extracellular matrix (ECM), type I collagen, and mimics the
3D geometry of an <i>in vivo </i>acinus. Most
attempts at <i>in vitro </i>culture have
been limited by the fact that isolated acinar cells show a decrease in the
amount of digestive enzymes they secrete as culture continues. For this reason,
we are using a reprogrammed cancer cell line. These cells can be induced with
doxycycline to express PTF1a, which allows the cells to adapt acinar
characteristics, such as the production of digestive enzymes. We were able to
successfully culture and induce PTF1a in these cells within our chip. We showed
that the cells exhibit no invasion into the collagen matrix once PTF1a is
expressed, thus eliminating a key aspect of cancer cell culture. The cells
grown in the chip are confirmed to be producing PRSS2, the digestive enzyme
trypsinogen. Collectively, this suggests that we have produced healthy acinar
cells growing in the same configuration that they would <i>in vivo. </i>This has many applications in the study of pancreatic
ductal adenocarcinoma, as we have developed way to culture reprogramed cancer
cells as their benign precursors and maintain acinar characteristics <i>in vitro.</i> It will also have applications
in the study of many other pancreatic diseases by providing an <i>in vitro</i> model of a healthy, functional
acinus.
|
8 |
The role of Parf, a novel partner of ARF, in pancreatic ductal adenocarcinoma and in ARF signalingMuniz, Viviane Palhares 01 December 2012 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is an incurable, highly metastatic cancer resistant to current treatments. A better understanding of the genetic basis of PDAC progression is urgently needed to improve treatment options. The ARF tumor suppressor is inactivated in ~45% of PDAC. My thesis lab identified a new, uncharacterized ARF binding protein, Partner of ARF isoform 1A (Parf-1A). This thesis explores the hypothesis that Parf-1A plays an important role in PDAC and ARF tumor suppressor signaling
Initial studies sought to develop a novel mouse xenograft model of PDAC metastasis that would expedite testing of putative PDAC genes. Human PDAC cell lines stably expressing luciferase were generated and introduced by intracardiac injection into immunodeficient mice to model hematogenous dissemination of cancer cells. Tumor development was monitored non-invasively by bioluminescence imaging and found to recapitulate PDAC tumor formation and metastatic distribution. The model was validated by the ability of ARF to suppress PDAC cancer cell migration in vitro and reduce tumor cell colonization in vivo; establishing a new bioluminescent mouse model for rapidly assessing the significance of suspected PDAC genes.
Using human PDAC cell lines and tumor specimens, we investigated the role and significance of Parf-1A to PDAC. RNAi analyses demonstrated Parf-1A is required for PDAC cell survival, proliferation and resistance to the PDAC therapeutic, oxaliplatin. PDAC cells are ARF-null; therefore these tumor promoting activities of Parf-1A were independent of ARF. Notably, immunohistochemical analyses of Parf-1A in human PDAC tumors showed Parf-1A expression is a prognostic marker of poor survival in PDAC patients. These data suggest Parf-1A is a novel biomarker of PDAC and potential target for anticancer therapy.
Other studies tested how Parf-1A influenced ARF signaling. Parf-1A depletion and overexpression showed it inhibits ARF anti-proliferative activity by mobilizing ARF from the nucleus (where it is functional) into the cytoplasm. These data show Parf-1A is a new inhibitor of ARF. Considered with findings that Parf-1A can act independent of ARF to promote PDAC tumorigenesis, such results suggest Parf-1A is a novel oncoprotein that acts through multiple pathways to facilitate tumorigenesis. Thus, Parf-1A may have broad relevance to many types of human cancers.
|
9 |
Urokinase-type plasminogen activator receptor contributes to chemosensitivity and epithelial-to-mesenchymal transition in PDAC / uPAR and p38 regulate autophagy dependent gemcitabine resistance in AsPC1: autophagy inhibitors and gemcitabine as a potential combined therapy for a subgroup of pancreastic cancersPeng, Luogen 11 November 2020 (has links)
No description available.
|
10 |
Immunohistochemical Antibody Panel for the Differential Diagnosis of Pancreatic Ductal Carcinoma from Gastrointestinal Contamination and Benign Pancreatic Duct Epithelium in Endoscopic Ultrasound-Guided Fine Needle Aspiration / EUS-FNA検体における膵管癌と胃腺窩上皮・良性膵上皮との鑑別に有用な免疫染色抗体パネルFuruhata, Ayako 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第20295号 / 人健博第43号 / 新制||人健||4(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 高桑 徹也, 教授 藤井 康友, 教授 武藤 学 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DGAM
|
Page generated in 0.0355 seconds