• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 34
  • 16
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 112
  • 45
  • 43
  • 24
  • 22
  • 16
  • 14
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Synthesis And In Vitro Biochemical Evaluation of Porphyrin Derivatives For Photodynamic Anticancer Therapy

Abdelaziz, Mostafa A. 26 August 2021 (has links)
No description available.
72

Immunstimulierende Effekte der Photodynamischen Therapie des Harnblasenkarzinoms mit dem Photosensitizer THPTS im orthotopen Rattenmodell

Stenglein, Philipp 13 September 2019 (has links)
No description available.
73

Synthesis and Characterization of Novel Ru(II) Dipyrrin Complexes for Use as Photodynamic Therapy Agents in Cancer Treatments

Tsao, Max 06 September 2019 (has links)
No description available.
74

Synthesis of Phenothiazinium Derivatives

Mehraban, Nahid 15 August 2012 (has links) (PDF)
Photodynamic Therapy (PDT) of cancer involves radiating photosensitizing drugs with light in tumors, which results in generating active singlet oxygen that kills cancer cells. Photosensitizers currently used in PDT are of low quantum yield and require high energy radiation, normally laser. Therefore there is always need for more effective PDT drugs. In this project we synthesized new derivatives of phenothiazinium for potential applications in PDT. Phenothiazinium was synthesized and derivatized by linking it to side groups containing imidazole rings. These derivatives are also expected to catalyze certain hydrolytic reactions. Such ôhydrolase modelsö use molecular recognition based on ??? stacking between the phenothiazinium ring and aromatic rings of specific substrates, such as anthracene monophosphate, while imidazole groups catalyze the hydrolysis of the phosphate ester by general acid-base mechanism.
75

Pulse Shape Analysis of Si Detector Signals from Fission Fragments using the LOHENGRIN Spectrometer

Papaioannou, Dimitrios January 2023 (has links)
Nuclear physics experiments typically involve the collection and analysis of detector signals produced by the interaction of subatomic particles with matter to deduce various quantities. When heavy ions are involved, Si Detector signals are distorted by the formation of a plasma-like cloud from the interaction between the heavy ions and the detector material. The signal amplitude is reduced and delayed, two effects known as Pulse Height Defect (PHD) and Plasma Delay Time (PDT). A recent experiment was performed at the Institut Laue-Langevin(ILL) experimental nuclear reactor facility in Grenoble, using the LOHENGRIN mass spectrometer, to study these walk effects. The purpose of this project is to use a subset of the data to perform pulse shape analysis and develop a parametrization of the pulse waveform in order to better understand the PDT and PHD and how the pulses are affected. Initially, the PDT and PHD are estimated for masses 90, 100, 130 and 143 u using already established methods. The pulse waveforms are then investigated and a suitable parametrization of the pulse waveform is developed. The region around the pulse onset, which is important in extracting the timing characteristics of the pulse, is found to be described rather well by the Landau function. The Landau function parameters are further investigated and correlations with pulse shape characteristics are discussed. Finally, this novel parametrization is used as an alternative approach to estimate the PDT for the same masses as initially. Comparisons between the two methods indicate that the PDT is actually a combined effect of the physical plasma delay and the walk effects introduced by the underlying triggering routine that is used during offline analysis.
76

Synthesis and Characterization of Ruthenium and Manganese Mono- and BimetallicComplexes towards the Photoactivated Release of Therapeutic Molecules

Pickens, Rachael 16 September 2022 (has links)
No description available.
77

INSIGHTS INTO PHOTODYNAMIC THERAPY AND ITS DOSIMETRY USING A DYNAMIC MODEL FOR ALA-PDT OF NORMAL HUMAN SKIN

LIU, BAOCHANG 10 1900 (has links)
<p>Photodynamic therapy (PDT) is a rapidly developing clinical treatment modality involving a light-activatable photosensitizer, tissue oxygen and light of an appropriate wavelength to generate cytotoxic reactive molecular species - primarily singlet oxygen (<sup>1</sup>O<sub>2</sub>). Singlet oxygen readily reacts with surrounding biomolecules leading to different biological effects and subsequent therapeutic outcomes. Over the last decades, many standard PDT treatments have been approved worldwide to treat different medical conditions ranging from a variety of cancer conditions to age-related macular degeneration (AMD). Meanwhile, many active clinical trials and pre-clinical studies are underway for other clinical indications. The therapeutic outcomes of PDT are difficult to predict reliably even with many years of research. The fundamental cause for this is the inherent complexity of PDT mechanisms. As PDT involves three main components, the outcomes of PDT are determined by the combination of all components. Each component varies temporally and spatially during PDT, and the variations are mutually dependent on each other. Moreover, components such as the photosensitizer can have great variations in their initial distribution among patients even before PDT treatment. Given this, no well accepted standard PDT dose metric method has been recognized in clinics, although different approaches including explicit, implicit and direct dosimetry have been studied. To tackle the inherently complicated PDT mechanism in order to provide insights into PDT and PDT dosimetry, a theoretical one-dimensional model for aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX)-PDT of human skin was developed and is presented in this thesis. The model incorporates major photophysical and photochemical reactions in PDT, and calculated temporal and spatial distributions of PDT components as well as the detectable emission signals including both sensitizer fluorescence and singlet oxygen luminescence (SOL) using typical clinical conditions. Since singlet oxygen is considered to cause PDT outcomes, the correlations of different PDT dose metrics to average reacted (<sup>1</sup>O<sub>2</sub>) "dose" and "dose" at different depths were examined and compared for a wide range of varied treatment conditions. The dose metrics included absolute fluorescence bleaching metric (AFBM), fractional fluorescence bleaching metric (FFBM) and cumulative singlet oxygen luminescence (CSOL), and the varied treatment conditions took into account different treatment irradiances and wavelengths, varied initial sensitizer concentration and distribution, and a wide range of optical properties of tissue. These investigations and comparisons provide information about the complicated dynamic process of PDT such as the induction of tissue hypoxia, photosensitizer photobleaching and possible PDT-induced vascular responses. It was also found that the CSOL is the most robust and could serve as a gold standard for the testing of other techniques. In addition to these theoretical studies, recent progress on the assessment of a novel, more efficient superconducting nanowire single photon detector (SNSPD) for singlet oxygen luminescence detection will be introduced and the current photomultiplier tubes (PMT) system will be briefly described as well. The author participated in the experimental assessments of the SNSPD and analyzed the results shown in this thesis.</p> / Doctor of Philosophy (PhD)
78

Inativação fotodinâmica em biofilme de Streptococcus mutans sobre bráquetes metálicos e cerâmicos: um estudo in vitro / Photodynamic inactivation of Streptococcus mutans biofilm on metal and ceramic brackets: a study in vitro

Esper, Maria Ângela Lacerda Rangel [UNESP] 16 February 2016 (has links)
Submitted by MARIA ÂNGELA LACERDA RANGEL ESPER null (angela_esper@hotmail.com) on 2016-04-13T16:41:11Z No. of bitstreams: 1 TESE FINAL ANGELA 2016.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-14T20:50:08Z (GMT) No. of bitstreams: 1 esper_malr_dr_sjc.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5) / Made available in DSpace on 2016-04-14T20:50:08Z (GMT). No. of bitstreams: 1 esper_malr_dr_sjc.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5) Previous issue date: 2016-02-16 / O trabalho in vitro avaliou a eficácia da inativação fotodinâmica (PDI) da eritrosina (E) e hematoporfirina IX (H), com 10 µM, utilizando LED azul, dose de 75 J/cm2 em células planctônicas e biofilme de S. mutans (UA 159). Suspensões padrões contendo 107 células/mL foram preparadas e submetidas a diferentes condições experimentais: a) hematoporfirina IX e LED (H+L+); b) eritrosina e LED (E+L+); c) apenas LED (F-L+); d) tratamento somente com hematoporfirina IX (H+L-); e) somente com eritrosina (E+L-); e f) grupo controle, sem tratamento com fotossensibilizador (F) e sem a utilização de LED (F-L-). As cepas foram semeadas em ágar MSBS para contagem de unidades formadoras de colônias (UFC/mL). Na segunda parte do trabalho foi realizado a PDI em biofilme de S. mutans sobre bráquetes metálicos e cerâmicos, com H a 10 µM e LED azul. Os resultados foram submetidos à análise de variância e teste de Tukey (p<0,05) e demonstraram que a E sob efeito do LED (E+L+) não foi eficaz na PDI de células planctônicas, nos parâmetros usados (p=0,3644). No entanto, a H promoveu redução de 6,78 log10 (p<0,0001), no grupo de tratamento (H+L+). A PDI com a associação da H e LED foi efetiva na redução de 100% de culturas planctônicas de S. mutans, porém o mesmo não foi observado na associação com a E, na dosimetria utilizada no experimento. A PDI no biofilme de S. mutans sobre bráquetes metálicos, com a H e LED não foi eficaz nos parâmetros utilizados (p=0,1023), no entanto, ocorreu diminuição significativa de 53% sobre bráquetes cerâmicos (p=0,004). A H IX modificada é promissora como agente fotossensibilizador a ser empregado na técnica de PDI em associação ao LED azul, sendo necessários outros ensaios, em novas concentrações e/ou dosimetrias para se conseguir a inativação bacteriana. / The in vitro study evaluated the efficacy of photodynamic inactivation (PDI) with erythrosine (E) and hematoporphyrin (H) 10 µM, using a blue light-emitting diode (LED), a fluence of 75 J/cm2 , on planktonic cultures and biofilm of S. mutans (UA 159). Suspensions containing 107 cells/mL were prepared and were tested under different experimental conditions: a) hematoporphyrin IX and LED (H+L+); b) erythrosine and LED irradiation (E+L+); c) only LED (P-L+); d) only hematoporphyrin IX (H+L-); e) only erythrosine (E+L-); and f) control group, no LED irradiation or photosensitizer (P) treatment (P-L-). After treatment, the strains were seeded onto MSBS agar in order to determine the number of colony-forming units (CFU/mL). The second part of this work consisted of the PDI of S. mutans biofilm on metal and ceramic brackets with the H 10 μM and blue LED. The results were submitted to analysis of variance and the Tukey test (p<0.05) and showed that E under the effect of LED proved to be ineffective in the PDI of planktonic cultures with the parameters used (p=0.3644). H, however, caused a reduction of 6.78 log10 (p<0.0001) in the treatment group (H+L+). PDI with H and LED exerted antimicrobial effect of 100% of the S. mutans strain studied, whereas the same was not observed in the association with E in the dosimetry used in this work. PDI on S. mutans biofilm on metal brackets, with H and LED was not effective with the parameters used (p=0.1023), however on ceramic brackets caused a significant reduction of 53% (p=0,004). Modified H IX is a promising photosensitizer to be used in the PDI technique in combination with blue LED. Therefore, new tests with new concentrations and/or dosimetry are needed to achieve bacterial inactivation.
79

Azacalixphyrines : émergence d'une nouvelle famille de tétraazamacrocycles aromatiques / Azacalixphyrins : emergence of a new family of aromatic tetraazamacrocycles

Chen, Zhongrui 19 November 2015 (has links)
Les travaux de thèse présentés dans ce mémoire ont ciblé trois familles de molécules π-conjuguées et s’inscrivent plus particulièrement dans le développement de la chimie des amino-azacalixarènes et des dérivés de phénazine, et d’une nouvelle classe de tétraazamacrocycles aromatiques appelés « azacalixphyrine ». Ces composés étant émergents dans la littérature, nous avons volontairement porté nos efforts sur la synthèse et la compréhension de ces nouveaux systèmes π-conjugués afin d’élaborer de nouvelles voies de synthèse mais aussi, le cas échéant, d’établir des relations structure / propriétés. L’accès synthétique à ces composés est basé sur des réactions de substitutions nucléophiles aromatiques. De nouveaux outils moléculaires sont ainsi proposés pour différentes applications dans le domaine de l’énergie, des matériaux et/ou de la santé. / The thesis work deals with three families of π-conjugated molecules and particularly focuses on amino-azacalixarenes and phenazine derivatives as well as a new class of aromatic tetraazamacrocycles named “azacalixphyrin”. Since these compounds are emerging in the literature, we have deliberately focused our efforts on their synthesis and on the physico-chemical studies of these new π-conjugated systems in order to, when it is appropriate, establish structure / properties relationships. The synthetic accesses to these compounds are mainly based on aromatic nucleophilic substitutions. All these derivatives are potentially new molecular tools for various applications in the fields of energy, materials and medicines.
80

[pt] DESENVOLVIMENTO DE DIODOS ORGÂNICOS EMISSORES DE LUZ (OLEDS) PARA APLICAÇÕES EM TERAPIA FOTODINÂMICA / [en] DEVELOPMENT OF ORGANIC LIGHT EMITTING DIODES (OLEDS) FOR PHOTODYNAMIC THERAPY APPLICATIONS

ALINE MAGALHAES DOS SANTOS 12 March 2024 (has links)
[pt] Este trabalho teve como objetivo o desenvolvimento de Diodos Orgânicos Emissores de Luz, OLED, para aplicações em terapia fotodinâmica. A terapia fotodinâmica é uma forma de tratamento que utiliza, basicamente, um fotossensibilizador e luz. Quando irradiado o fotossensibilizador produz espécies reativas de oxigênio que podem destruir organismos como fungos, vírus, bactérias e células tumorais. Esse trabalho se dedica a fabricação, caracterização e teste de OLEDs como fontes de luz para terapia fotodinâmica, PDT, representando uma alternativa as formas convencionais de tratamento médico. Como forma de testar o desempenho dos dispositivos foram realizados ensaios de PDT. Esses ensaios consistem em utilizar uma sonda sensível à presença do oxigênio singleto (1O2). A sonda utilizada foi o DPBF que, na presença do 1O2, rompe um dos seus anéis aromáticos. Esse efeito pode ser acompanhado pelo decaimento da intensidade do pico de absorção da sonda. Sabendo o intervalo de tempo entre cada medida é possível inferir o decaimento da sonda a fim de comparar o desempenho dos dispositivos. Para validar o teste, foi realizado um estudo de referência utilizando um LED comercial com pico de emissão em 658nm. Essa etapa foi fundamental para compreensão das condições que as fontes de luz devem ter para que os ensaios fossem realizados em tempos similares aos tratamentos envolvendo terapia fotodinâmica. Após isso, o trabalho consistiu na fabricação de OLEDs de três tipos de camadas emissoras: fluorescente, fosforescente e TADF. As escolhidas para esse trabalho foram: Alq3: DCM2, Bebq2:Ir(pic)3, BCPO: Ir(fliq)2acac e mCP: TXO − TPA , cuja banda de emissão se sobrepõe a banda de absorção do fotossensibilizador utilizado, o azul de metileno. Na primeira etapa foram fabricados OLEDs de área pequena, 3mm2 . Após as escolhas das estruturas, fabricação e as medidas de caracterização elétrica, foram realizados os ensaios de PDT. Para os ensaios iniciais, foram utilizadas duas fontes de alimentação dos OLEDs, modo AC e DC a fim de avaliar o desempenho dos dispositivos em diferentes configurações. Tendo como destaque os OLEDs de camada emissora Alq3: DCM2 e Bebq2:Ir(pic)3 (em modo DC) e BCPO: Ir(fliq)2acac (em modo AC), pois conseguiram estimular o fotossensibilizador azul de metileno a produzir oxigênio singleto suficiente para decair o pico de absorção da sonda DPBF no intervalo de tempo do ensaio de PDT (30 minutos). Na etapa seguinte, foram selecionados os OLEDs de camada emissora Alq3: DCM2 e Bebq2:Ir(pic)3 com o objetivo de testar o desempenho dos dispositivos de área ativa 27mm2 , sendo chamados nessa tese de área grande. Apresentando destaque os dispositivos Bebq2:Ir(pic)3. Também foram realizadas comparações entre os OLEDs de área grande e pequena, tanto em perda de potência (por cento) no tempo quando nos ensaios de PDT. Como o melhor desempenho foi obtido com o área grande, essa estrutura foi utilizada na fabricação dos OLEDs Bebq2:Ir(pic)3 sobre substratos conformáveis comerciais de celulose bacteriana (BC), amida de bloco de poliéter (PEBAX) e poliuretano (PU), funcionalizados no LOEM, e polietileno tereftalato (PET). Essa pesquisa é inovadora no Brasil e de grande interdisciplinaridade pois envolve o estudo na arquitetura, fabricação, caracterização dos OLEDs à ensaios em Terapia fotodinâmica. Além de englobar a possibilidade de incluir a síntese de novos materiais e testes in vitro e in vivo. Esse trabalho é também o início de uma nova linha de pesquisa com aplicação biológica no grupo LOEM. / [en] This work aimed to develop Organic Light Emitting Diodes, OLED, for applications in photodynamic therapy. Photodynamic therapy is a treatment that basically uses a photosensitizer and light. When irradiated, the photosensitizer produces reactive oxygen species that destroy cells such as fungi, viruses, bacteria and tumor cells. This work is dedicated to the fabrication, characterization and tests of OLEDs as light sources for photodynamic therapy, PDT, representing an alternative to classical forms of medical treatment. As a way of testing the performance of the devices, PDT tests were carried out. These tests consist of using a probe sensitive to the presence of singlet oxygen (1O2). The probe used was DPBF which, in the presence of 1O2, breaks one of its aromatic rings. This effect can be followed by the decay of the intensity of the probe s absorption peak. The time interval between each measurement is set on the measurement, it is possible to infer the probe decay in order to compare the performance of the devices. To validate the test, a reference study was carried out using a commercial LED with an emission peak at 658nm. This step was fundamental for understanding the conditions that the light sources should have so that the tests could be carried out in times similar to the treatments involving photodynamic therapy. After that, the work consisted of manufacturing OLEDs with three types of emitting layers: fluorescent, phosphorescent and TADF. The emission layers chosen were: Alq3: DCM2, Bebq2:Ir(pic)3, BCPO: Ir(fliq)2acac and mCP:TXO-TPA , whose emission band is similar to the absorption band of the photosensitizer used, blue of methylene. In the first part were manufactures OLEDs with a small area, 3mm2 . After choosing the structures, fabrication and electrical characterization measures, the PDT tests were carried out. For the initial tests, two OLED power supplies were used, AC and DC mode, in order to evaluate the performance of the devices in different configurations. Highlighting the emitting layer OLEDs Alq3: DCM2 and Bebq2:Ir(pic)3 (in DC mode) and BCPO: Ir(fliq)2 acac (in AC mode), as they managed to stimulate the photosensitizer methylene blue to produce enough singlet oxygen to decay the peak absorption of the DPBF probe in the time interval of the PDT assay (30 minutes). On next step, the OLEDs selected were one with the emitting layer Alq3: DCM2 and Bebq2: Ir(pic)3 with the objective of testing the performance of the devices with an active area of 27mm2 , called large area. Introducing featured devices Bebq2:Ir(pic)3. Comparisons between large and small area OLEDs were also made in power loss (percent) over time and in PDT tests. As the best performance was obtained with the large area, this structure was used in the manufacture of OLEDs Bebq2: Ir(pic)3 on commercial conformable substrates of bacterial cellulose(BC), polyether block amide (PEBAX) and polyurethane (PU), functionalized in LOEM, and polyethylene terephthalate( PET). This research is innovative in Brazil and highly interdisciplinary as it involves the study of architecture, fabrication, characterization and tests in PDT and has the possibility of involving the synthesis of new materials and in vitro and in vivo tests. This work is also the beginning of a new line of research with biological application at LOEM group.

Page generated in 0.0498 seconds