• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 40
  • 40
  • 24
  • 24
  • 23
  • 21
  • 19
  • 18
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Low-Complexity PAPR Reduction Schemes for Multi-Carrier Systems

Wang, Sen-Hung 23 August 2010 (has links)
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vectors in place of the conventional IFFT operations. To ensure that the elements of these phase rotation vectors have an equal magnitude, conversion vectors should have the form of a perfect sequence. This study firstly presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclically shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR reduction performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve a substantially lower computational complexity. Since the three proposed PAPR reduction schemes cannot be utilized in the orthogonal frequency division multiple access (OFDMA) system. A low-complexity scheme for PAPR reduction in OFDMA uplink systems using either an interleaved or a sub-band sub-carrier assignment strategy is also proposed in the second part of this study. The proposed scheme requires just one IFFT operation. The PAPR reduction performance of the proposed scheme is only marginally poorer than that of the traditional SLM scheme. However, the proposed schemes have significantly lower computational complexities. Besides, multiple-input multiple-output (MIMO) OFDM systems with space-frequency block coding (SFBC) are well-known for their robust performance in time selective fading channels. However, SFBC MIMO-OFDM systems have a high computational complexity since the number of IFFTs required scales in direct proportion to the number of antennas at the transmitter. Furthermore, SFBC MIMO-OFDM systems have a high PAPR. Accordingly, a low-complexity PAPR reduction scheme for SFBC MIMO OFDM systems with the Alamouti encoding scheme is proposed in this study. Extending this scheme obtains two low-complexity transmitter architectures for SFBC MIMO-OFDM systems with a general encoding matrix and an arbitrary number of transmitter antennas. The proposed schemes achieve a significant reduction in computational complexity by fully exploiting the time-domain signal properties of the transmitted signal. In addition, a PAPR reduction scheme is presented based on the proposed transmitter schemes. It is shown that the PAPR reduction performance of the proposed scheme is almost as good as that of the traditional SLM scheme, but is achieved with a substantially lower computational complexity.
32

New signal processing approaches to peak-to-average power ratio reduction in multicarrier systems

Bae, Ki-taek 06 December 2010 (has links)
Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems. Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research. First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering in OFDM systems. Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM. Third, we propose an adaptive clipping control algorithm and pilotaided algorithm to address a fundamental issue associated with two lowcomplexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is obtained for any low value of the initial target clipping ratio. / text
33

Optical wireless communications with optical power and dynamic range constraints

Yu, Zhenhua 22 May 2014 (has links)
Along with the rapidly increasing demand for wireless data while more and more crowded radio frequency (RF) spectrum, optical wireless communications (OWC) become a promising candidate to complement conventional RF communications, especially for indoor short and medium range data transmissions. Orthogonal frequency division multiplexing (OFDM) is considered for OWC due to its ability to boost data rates. However, the average emitted optical power and dynamic range of driving signals of LEDs are two major constraints in OWC. OFDM waveforms exhibits high upper and lower peak-to-average power ratios (PAPRs), which make OFDM signals optical power inefficient and easy to violate the dynamic range of LEDs, resulting clipping and nonlinear distortions. In this dissertation, we analyze and design optical power and dynamic range constrained OWC systems, for which OFDM is our major subject. We first derive distributions of upper PAPR and lower PAPR of OWC-OFDM signals. Then we analyze the clipped OFDM signals in term of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both optical power and dynamic range constraints. The next part of this dissertation is the OFDM system design for visible light communications (VLC) considering illumination requirement. We investigate the illumination-to-communication efficiency (ICE) in VLC-OFDM, and design the brightness control and flickering mitigation schemes for VLC-OFDM. In the end, to reduce the complexity of driving circuits of LEDs , we propose using delta-sigma modulators in VLC-OFDM systems to convert continuous magnitude OFDM symbols into two-level LED driver signals without loss of the communication theory advantages of OFDM.
34

Mitigating the effect of soft-limiting for OFDM peak reduction

Bibi, Nargis January 2014 (has links)
Digital communication systems which use Orthogonal Frequency Division Multiplexing (OFDM) are now widely used and have many advantages. The main disadvantage is the requirement for highly linear analogue electronics including the high power amplifier (HPA). This requirement cannot be met in all circumstances because of the occurrence of symbols with high peak to average power ratio (PAPR). Such symbols may be non-linearly distorted by limiting. Approaches to solve this problem have been either to reduce the PAPR at the transmitter or to try to mitigate the effect of the non-linearity at the receiver. Soft-limiting, i.e. applying limiting in software prior to the HPA is a simple way to reduce the PAPR. It produces non-linear distortion which will cause an increase in the bit-error-rate (BER) at the receiver. This thesis surveys existing alternatives ways of reducing the effect of non-linearity and proposes some new ones. Two iterative receiver techniques, based on statistical analysis of the nature of the non-linearity, have been implemented and investigated. These are the ‘Bussgang Noise Cancellation’ (BNC) technique and the ‘Decision Aided Reconstruction’ (DAR) techniques. As these techniques are valid for any memory-less nonlinearity, an alternative form of limiting, named as Inverted-Wraparound (IWRAP) has been included in the BNC investigation. A new method is proposed which is capable of correcting the received time-domain samples that are clipped, once they have been identified. This is named the ‘Equation-Method’ and it works by identifying constellation symbols that are likely to be correct at the receiver. If there are a sufficient number of these and they are correctly identified, the FFT may be partitioned to produce a set of equations that may be solved for the clipped time-domain samples. The thesis proposes four enhancements to this new method which improve its effectiveness. It is shown that the best form of this method outperforms conventional techniques especially for severe clipping levels. The performance of these four enhancements is evaluated over channels with additive white Gaussian noise (AWGN) in addition to clipping distortion. A technique based on a ‘margin factor’ is designed to make these methods work more effectively in the presence of AWGN noise. A new combining algorithm referred as ‘HARQ for Clipping’ is presented where soft bit decisions are combined from multiple transmissions. ‘HARQ for Clipping’ has been combined with the best version of the Equation-Method, and the performance of this approach is evaluated in terms of the BER with different levels of AWGN. It has been compared to other approaches from the literature and was found to out-perform the BNC iterative receiver by 3dB at signal to noise ratios around 10dB. Without HARQ, the best version of the Equation-Method performs better than the BNC receiver, at signal-to-nose ratios above about 17dB.
35

PERFORMANCE ENHANCEMENT OF OFDM IN PAPR REDUCTION USING NEW COMPANDING TRANSFORM AND ADAPTIVE AC EXTENSION ALGORITHM FOR NEXT GENERATION NETWORKSPERFORMANCE ENHANCEMENT OF OFDM IN PAPR REDUCTION USING NEW COMPANDING TRANSFORM AND ADAPTIVE AC EXTENSION ALGORITHM FOR NEXT GENERATION NETWORKS

BAIG, CLEMENT RANJITH ANTHIKKAD & IRFAN AHMED January 2013 (has links)
This paper presents a new hybrid PAPR reduction technique for the OFDM signal, which combines a multiple symbol representations method with a signal clipping method. The clipping method is a nonlinear PAPR reduction scheme, where the amplitude of the signal is limited to a given threshold. Considering the fact that the signal must be interpolated before A/D conversion, a variety of clipping methods has been proposed. Some methods suggest the clipping before interpolation, having the disadvantage of the peaks re-growth. Other methods contributed that the clipping after interpolation, having the disadvantage of out-of-band power production. In order to overcome this problem different filtering techniques have been proposed. Filtering can also cause peak re-growth, but less than the clipping before interpolation. Another clipping technique supposes that only subcarriers having the highest phase difference between the original signal and its clipped variant will be changed. This is the case of the partial clipping method. To further reduce the PAPR, the dynamic of the clipped signal can be compressed. Linear methods like partial transmit sequence or selective mapping has been proposed for the reduction of PAPR as well. Another PAPR reduction method is the tone reservation. It uses tones on which no data is sent to reduce the transmitted signal peaks. Derivatives of this method with lower computation complexity and improved performance have been proposed: One-Tone One-Peak and one by-one iteration. A similar PAPR reduction method is the multiple symbol representations, where alternative signalling points are used to represent one symbol. The simulation results highlight the advantages of the proposed PAPR reduction method. / The proposed technique namely Adaptive Active Constellation Extension (Adaptive ACE) Algorithm reduced the high Peak-to-Average Power Ratio (PAPR) of the Orthogonal Frequency Division Multiplexing (OFDM) systems. The Peak-to-Average Power Ratio (PAPR) is equal to 6.8 dB for the target clipping ratios of 4 dB, 2 dB and 0 dB by using Adaptive Active Constellation Extension (Adaptive ACE) Algorithm. Thus, the minimum PAPR can be achieved for low target clipping ratios. The Signal-to-Noise Ratio (SNR) of the Orthogonal Frequency Division Multiplexing (OFDM) signal obtained by the Adaptive Active Constellation Extension (Adaptive ACE) algorithm is equal to 1.2 dB at a Bit Error Rate (BER) of 10-0..4 for different constellation orders like 4-Quadrature Amplitude Modulation (4-QAM), 16-Quadrature Amplitude Modulation (16-QAM) and 64-Quadrature Amplitude Modulation (16-QAM). Here, the Bit Error Rate of 10-0.4 or 0.398, that means a total of 398-bits are in error when 1000-bits are transmitted via a communication channel or approximately 4-bits are in error when 10-bits are transmitted via a communication channel, which is high when compared to that of the original Orthogonal Frequency Division Multiplexing (OFDM) signal. The other problems faced by the Adaptive Active Constellation Extension (Adaptive ACE) algorithm are Out-of-Band Interference (OBI) and peak regrowth. Here, the Out-of-Band Interference (OBI) is a form of noise or an unwanted signal, which is caused when the original Orthogonal Frequency Division Multiplexing (OFDM) signal is clipped for reducing the peak signals which are outside of the predetermined area and the peak regrowth is obtained after filtering the clipped signal. The peak regrowth results to, increase in the computational time and computational complexity. In this paper, we have proposed a PAPR reduction scheme to improve the bit error rate performance by applying companding transform technique. Hence, 1-1.5 dB reduction in PAPR with this Non-companding technique is achieved. In Future, We can accept to implement the same on Rician and Rayleigh channels. / Clement Ranjith Anthikkad (E-mail: clement.ranjith@gmail.com / clan11@bth.se) & Irfan Ahmed Baig (E-mail: baig.irfanahmed@gmail.com / ir-a11@bth.se )
36

REDUKCE DYNAMIKY SIGNÁLU V SYSTÉMECH S ORTOGONÁLNÍM FREKVENČNÍM MULTIPLEXEM / THE REDUCTION OF SIGNAL DYNAMIC IN ORTHOGONAL FREQUENCY DIVISION MULTIPLEX SYSTEMS

Urban, Josef January 2010 (has links)
This doctoral thesis is focused into the area of multicarrier radio communications systems. These systems are perspective for current and incoming mobile communications and wireless networks. Advantages of multicarrier systems like better multipath propagation resistivity are redeemed by some disadvantages. The high peak to average power ratio of transmitted signal belongs to these disadvantages, for its inconvenience for high efficient power amplification. The thesis concerns with peak to average power ratio reduction methods for OFDM systems, that belongs to the most used multicarrier systems. One of the main objectives is the modification of the existing methods with the intention of complexity reduction. Following subject of interest is the analysis of suitable methods combinations possibilities for more significant peak to average power ratio reduction. One part of this thesis is research of influence of these methods on the OFDM signals with different parameters.
37

An offset modulation method used to control the PAPR of an OFDM transmission

Dhuness, Kahesh 14 August 2012 (has links)
Orthogonal frequency division multiplexing (OFDM) has become a very popular method for high-data-rate communication. However, it is well known that OFDM is plagued by a large peak-to-average power ratio (PAPR) problem. This high PAPR results in overdesigned power amplifiers, which amongst other things leads to inefficient amplifier usage, which is undesirable. Various methods have been recommended to reduce the PAPR of an OFDM transmission; however, all these methods result in a number of drawbacks. In this thesis, a novel method called offset modulation (OM-OFDM) is proposed to control the PAPR of an OFDM signal. The proposed OM-OFDM method does not result in a number of the drawbacks being experienced by current methods in the field. The theoretical bandwidth occupancy and theoretical bit error rate (BER) expression for an OM-OFDM transmission is derived. A newly applied power performance decision metric is also introduced, which can be utilised throughout the PAPR field, in order to compare various methods. The proposed OM-OFDM method appears to be similar to a well-known constant envelope OFDM (CE-OFDM) transmission. The modulation, structural and performance differences between an OM-OFDM and a CE-OFDM method are discussed. By applying the power performance decision metric, the OM-OFDM method is shown to offer significant performance gains when compared to CE-OFDM and traditional OFDM transmissions. In addition, the OM-OFDM method is able to accurately control the PAPR of a transmission for a targeted BER. By applying the power performance decision metric and complementary cumulative distribution function (CCDF), the proposed OM-OFDM method is shown to offer further performance gains when compared to existing PAPR methods, under frequency selective fading conditions. In this thesis, the OM-OFDM method has been combined with an existing active constellation extended (ACE) PAPR reduction method. To introduce a novel method called offset modulation with active constellation extension (OM-ACE), to control the PAPR of an OFDM signal. The theoretical BER expression for an OM-ACE transmission is presented and validated. Thereafter, by applying the decision metric and CCDF, the OM-ACE method is shown to offer performance improvements when compared to various PAPR methods. The use of OM-OFDM for cognitive radio applications is also investigated. Cognitive radio applications require transmissions that are easily detectable. The detection characteristics of an OM-OFDM and OFDM transmission are studied by using receiver operating characteristic curves. A derivation of a simplified theoretical closed-form expression, which relates the probability of a missed detection to the probability of a false alarm, for an unknown deterministic signal, at various signal-to-noise ratio (SNR) values is derived and validated. Previous expressions have been derived, which relate the probability of a missed detection to the probability of a false alarm. However, they have not been presented in such a generic closed-form expression that can be used for any unknown deterministic signal (for instance OFDM and OM-OFDM). Thereafter, an examination of the spectrum characteristics of an OM-OFDM transmission indicates its attractive detection characteristics. The proposed OM-OFDM method is further shown to operate at a significantly lower SNR value than an OFDM transmission, while still offering better detection characteristics than that of an OFDM transmission under Rician, Rayleigh and frequency selective fading channel conditions. In addition to its attractive PAPR properties, OM-OFDM also offers good detection characteristics for cognitive radio applications. These aspects make OM-OFDM a promising candidate for future deployment. / Thesis (PhD)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted
38

Linear Power-Efficient RF Amplifier with Partial Positive Feedback

King, Matthew E. 01 June 2012 (has links) (PDF)
Over the last decade, the number of mobile wireless devices on the market has increased substantially. New “multi-carrier” modulation schemes, such as OFDM, WCDMA, and WiMAX, have been developed to accommodate the increasing number of wireless subscribers and the demand for faster data rates within the limited commercial frequency spectrum. These complex modulation schemes create signals with high peak-to-average power ratios (PAPR), exhibiting rapid changes in the signal magnitude. To accommodate these high-PAPR signals, RF power amplifiers in mobile devices must operate under backed-off gain conditions, resulting in poor power efficiency. Various efficiency-enhancement solutions have been realized for backed-off devices to combat this issue. A brief overview of one of the more extensively researched solutions, the Doherty amplifier, is given, and its inherent limitations are discussed. A recently proposed amplifier topology that provides the efficiency benefits of the Doherty amplifier, while overcoming some of the fundamental problems that plague the standard Doherty architecture, is investigated. A step-by-step design methodology is presented and confirmed by extensive simulation in Agilent ADS. A design example, tuned for maximum efficiency at peak output power, is implemented on a PCB and tested to verify the validity of the proposed circuit configuration.
39

On The Peak-To-Average-Power-Ratio Of Affine Linear Codes

Paul, Prabal 12 1900 (has links)
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in an Orthogonal Frequency Division Multiplexing system; a well known class of such codes being the cosets of Reed-Muller codes. In this thesis, classes of such coset-codes of arbitrary linear codes are considered. It has been proved that the size of such a code can be doubled with marginal/no increase in the PAPR. Conditions for employing this method iteratively have been enunciated. In fact this method has enabled to get the optimal coset-codes. The PAPR of the coset-codes of the extended codes is obtained from the PAPR of the corresponding coset-codes of the parent code. Utility of a special type of lengthening is established in PAPR studies
40

Crest Factor Reduction using High Level Synthesis

Mahmood, Hassan January 2017 (has links)
Modern wireless mobile communication technology has made noticeable improvements from the technologies in the past but is still plagued by poor power efficiency of power amplifiers found in today’s base stations. One of the factors that affect the power efficiency adversely comes from modern modulation techniques like orthogonal frequency division multiplexing which result in signals with high peak to average power ratio, also known as the crest factor. Crest factor reduction algorithms are used to solve this problem. However, the dominant method of hardware description for synthesis has been to start with writing register transfer level code which gives a very fixed implementation that may not be the optimal solution. This thesis project is focused on developing a peak cancellation crest factor reduction system, using a high-level language as the system design language, and synthesizing it using high-level synthesis. The aim is to find out if highlevel synthesis design methodology can yield increased productivity and improved quality of results for such designs as compared to the design methodology that requires the system to be implemented at the register transfer level. Design space exploration is performed to find an optimal design with respect to area. Finally, a few parameters are presented to measure the performance of the system, which helps in tuning it. The results of design space exploration helped in choosing the best possible implementation out of four different configurations. The final implementation that resulted from high-level synthesis had an area comparable to the previous register transfer level implementation. It was also concluded that, for this design, the high-level synthesis design methodology increased productivity and decreased design time. / Användning av högnivåsyntes för reduktion av toppfaktor Det har gjorts noterbara framsteg inom modern trådlös kommunikationsteknik för mobiltelefoni, men tekniken plågas fortfarande av dålig energieffektivitet hos förstärkarna i dagens basstationer. En faktor som påverkar energieffektiviteten negativt är om signaler har en stor skillnad mellan maximal effekt och medeleffekt. Kvoten mellan maximal effekt och medeleffekt kallas för toppfaktor, och en egenskap hos moderna moduleringstekniker, såsom ortogonal frekvensdelningsmodulering, är att de har en hög toppfaktor. Algoritmer för reducering av toppfaktor kan lösa det problemet. Den dominerande metoden för design av hårdvara är att skriva kod i ett hårdvarubeskrivande språk med abstraktionsnivån Register Transfer Level och sedan använda verktyg för att syntetisera hårdvara från koden. Resultatet är en specifik implementation som inte nödvändigtvis är den optimala lösningen. Det här examensarbetet är inriktat på att utveckla ett system för reducering av toppfaktor, baserat på algoritmen Peak Cancellation, genom att skriva kod i ett högnivåspråk och använda verktyg för högnivåsyntes för att syntetisera designen. Syftet är att ta reda på om högnivåsyntes som designmetod kan ge ökad produktivitet och ökad kvalitet, för den här typen av design, jämfört med den klassiska designmetoden med abstraktionsnivån Register Transfer Level. Verktyget för högnivåsyntes användes för att på ett effektivt sätt undersöka olika designalternativ för att optimera kretsytan. I rapporten presenteras ett antal parametrar för att mäta prestandan hos systemet, vilket ger information som kan användas för finjustering. Resultatet av undersökningen av designalternativ gjorde det möjligt att välja den bästa implementationen bland fyra olika konfigurationer. Den slutgiltiga implementationen hade en kretsyta som är jämförbar med en tidigare design som implementerats med hårdvarubeskrivande språk med abstraktionsnivån Register Transfer Level. En annan slutsats är att, för den här designen, så gav designmetoden med högnivåsyntes ökad produktivitet och minskad designtid.

Page generated in 0.0969 seconds