Spelling suggestions: "subject:"genetration"" "subject:"enetration""
121 |
Free fall impact penetration tests on soils /Chaudhuri, Saurendranath, January 1979 (has links)
Thesis (M.Eng.) -- Memorial University of Newfoundland. / Bibliography : leaves 118-122. Also available online.
|
122 |
Avaliação farmacocinética da quetiapina nanoencapsulada : modelo para estudo de delivery cerebral através de um nanocarreador polimérico / Pharmacokinetic investigation of nanocapsulated quetiapine : a model to study drug delivery to the brain by polymeric nanocarriersCarreño, Fernando January 2015 (has links)
Introdução: A barreira hematoencefálica limita a penetração de compostos farmacologicamente ativos para o cérebro devido à presença de zônulas de oclusão no endotélio cerebral e a expressão de transportadores de influxo e efluxo que modulam o acesso de fármacos para o parênquima cerebral. Nanocápsulas de núcleo lipídico (LNC) tem sido estudadas como carreadores de fármacos para o tecido cerebral devido à capacidade de modulação da farmacocinética desses compostos. Entretanto, ainda pouco se sabe sobre os processos envolvidos nas alterações farmacocinéticas e na distribuição tecidual promovidas por esses transportadores. Objetivo: Pretendeu-se investigar as alterações na farmacocinética plasmática e penetração cerebral da quetiapina (QTP) nanoencapsulada em ratos Wistar. Materiais e Métodos: QLNC (1mg/mL) foram obtidas através da metodologia de nanoprecipitação e apresentaram reduzido tamanho de partícula (143 ± 6 nm), baixo indicie de polidispersão (PI < 0.1), alta eficiência de encapsulação (96%), potencial zeta negativo (-7.65 ± 0.815 mV) e pH ácido. QLNC quando visualizadas por MET apresentaram tamanho esférico, homogêneo com ausência de agregados. Os estudos in vivo desse trabalho foram aprovados pelo CEUA/UFRGS. Análise do plasma total e a utilização da microdiálise para determinação das concentrações plasmáticas e cerebrais livres foram realizadas após administração intravenosa da formulação de nanocápsulas de QTP (5 mg /kg ) (QLCN) ou do fármaco em solução (FQ) (5 mg /kg e 10 mg /kg) na presença e na ausência de 30 mg /kg de probenecida (PB), um inibidor de transportadores de membrana. Métodos validados foram utilizados para a quantificação do fármaco em diferentes matrizes. As concentrações cerebral e hepática totais foram investigadas através da técnica de homogeneizado de tecido. Além disso, a fração livre no plasma (fu) e a penetração nos eritrócitos também foi realizada. Resultados: QTP apresentou farmacocinética linear na faixa de doses investigadas, é um substrato para transportadores de efluxo na BHE. Diferenças foram observadas na fu da QTP até 2 h após administração de QLNC indicando que LNC do tipo III promove uma liberação sustentada do fármaco do carreador. QLNC não foi capaz de alterar o coeficiente de partição nos eritrócitos determinado in vitro. As concentrações cerebrais e hepáticas totais foram aumentadas após administração da formulação de nanocápsulas, porém, as concentrações cerebrais livres não foram alteradas em comparação com o QTP em solução. Após administração de PB o fator de penetração da QTP livre no cérebro foi reduzido de 1,55 ± 0.17 para 0,94 ± 0,15. Porém, essa inibição pela probenecida não teve efeito na penetração cerebral de QLNC (0,88 ± 0,21 – 0,92 ± 0.13) provavelmente devido ao fato da QTP ser carreada pela LNC e não estar disponível para interagir com transportadores. Conclusão: Considerando todos os resultados sugere-se que as LNC do tipo III carreiam a QTP através da circulação sistêmica até o parênquima cerebral. / Introduction: Blood-brain barrier (BBB) hinders the delivery of therapeutics to central nervous system due to the endothelial cells tight junctions, which restrict paracellular transport of substances, and the expression of influx and efflux transporters, which modulate drugs access to the brain. Lipid-core nanocapsules (LNC) have been proposed as drug carriers to improve brain delivery by modulating drug pharmacokinetics (PK). However, little in know about this modulation process and it is not clear whether the LCN carry the drug through the BBB or increase free drug penetration due to changes in the barrier permeability. Objective: The work aimed to investigate the alterations in the model drug quetiapine (QTP) plasma PK and brain penetration following nanoencapsulation into LNC (QLNC) using microdialysis. Methods: QLNC (1 mg.mL-1) were obtained by nanoprecipitation and presented small particle size (143 ± 6 nm), low polidispersion index (PI < 0.1), high incorporation efficiency (96%), negative zeta potential (–7.65 ± 0.815 mV) and acidic pH. TEM photomicrography showed spherically shaped particles and absence of aggregation. Animal studies approved by CEUA/UFRGS. Total plasma and free plasma and brain concentrations, last two determined by microdialysis, were analyzed after QLNC (5 mg/kg) and free drug (FQ – 5 and 10 mg/gk) i.v. dosing to Wistar rats alone or following probenecid (PB), an influx transporter inhibitor, i.v. administration (30 mg/kg). Drug was quantified in all matrices by validate LC/UV methods. Total brain and liver concentration after FQ and QLNC dosing were investigated in tissues homogenate. Furthermore, QTP free fraction (fu) in plasma and erythrocyte penetration were determined. Results: QTP presented linear PK in the dose range investigated and is substrate to influx transporters at the BBB. Differences observed on QTP fu up to 2 h after QLNC dosing indicate a drug slow release in the blood stream loaded into the LNC type III nanocarrier for this period of time. The LNC did not altered QTP erythrocytes partition coefficient. Total brain and liver concentrations were increased after QLNC dosing but free brain concentrations were not altered in comparison with FQ dosing. After PB dosing, QTP brain penetration was reduced from 1.55 ± 0.17 to 0.94 ± 0.15 when FQ was administered but the inhibition of influx transporters had no effect on QLNC brain penetration (0.88 ± 0.21 to 0.92 ± 0.13) probably because QTP is loaded into the LNC and not available to interact with transporters. Conclusions: Taking together these results suggested that LNC type III carries QTP in the blood stream and delivers the drug to the brain. Read more
|
123 |
Why Johnny Still Can’t Pentest: A Comparative Analysis of Open-source Black-box Web Vulnerability ScannersKhalil, Rana Fouad 19 December 2018 (has links)
Black-box web application vulnerability scanners are automated tools that are used to crawl a web application to look for vulnerabilities. These tools are often used in one of two ways. In the first approach, scanners are used as Point-and-Shoot tools where a scanner is only given the root URL of an application and asked to scan the site. Whereas, in the second approach, scanners are first configured to maximize the crawling coverage and vulnerability detection accuracy. Although the performance of leading commercial scanners has been thoroughly studied, very little research has been done to evaluate open-source scanners. This paper presents a feature and performance evaluation of five open-source scanners. We analyze the crawling coverage, vulnerability detection accuracy, scanning speed, report- ing and usability features. The scanners are tested against two well known benchmarks: WIVET and WAVSEP. Additionally, the scanners are tested against a realistic web application called WackoPicko. The chosen benchmarks are composed of a wide range of vulnerabilities and crawling challenges. Each scanner is tested in two modes: default and configured. Lastly, the scanners are compared with the state of the art commercial scanner Burp Suite Professional.
Our results show that being able to properly crawl a web application is a critical task in detecting vulnerabilities. Unfortunately, the majority of the scanners evaluated had difficulty crawling through common web technologies such as dynamically generated JavaScript content and Flash applications. We also identified several classes of vulnerabilities that are not being detected by the scanners. Furthermore, our results show that scanners displayed considerable improvement when run in configured mode. Read more
|
124 |
Avaliação farmacocinética da quetiapina nanoencapsulada : modelo para estudo de delivery cerebral através de um nanocarreador polimérico / Pharmacokinetic investigation of nanocapsulated quetiapine : a model to study drug delivery to the brain by polymeric nanocarriersCarreño, Fernando January 2015 (has links)
Introdução: A barreira hematoencefálica limita a penetração de compostos farmacologicamente ativos para o cérebro devido à presença de zônulas de oclusão no endotélio cerebral e a expressão de transportadores de influxo e efluxo que modulam o acesso de fármacos para o parênquima cerebral. Nanocápsulas de núcleo lipídico (LNC) tem sido estudadas como carreadores de fármacos para o tecido cerebral devido à capacidade de modulação da farmacocinética desses compostos. Entretanto, ainda pouco se sabe sobre os processos envolvidos nas alterações farmacocinéticas e na distribuição tecidual promovidas por esses transportadores. Objetivo: Pretendeu-se investigar as alterações na farmacocinética plasmática e penetração cerebral da quetiapina (QTP) nanoencapsulada em ratos Wistar. Materiais e Métodos: QLNC (1mg/mL) foram obtidas através da metodologia de nanoprecipitação e apresentaram reduzido tamanho de partícula (143 ± 6 nm), baixo indicie de polidispersão (PI < 0.1), alta eficiência de encapsulação (96%), potencial zeta negativo (-7.65 ± 0.815 mV) e pH ácido. QLNC quando visualizadas por MET apresentaram tamanho esférico, homogêneo com ausência de agregados. Os estudos in vivo desse trabalho foram aprovados pelo CEUA/UFRGS. Análise do plasma total e a utilização da microdiálise para determinação das concentrações plasmáticas e cerebrais livres foram realizadas após administração intravenosa da formulação de nanocápsulas de QTP (5 mg /kg ) (QLCN) ou do fármaco em solução (FQ) (5 mg /kg e 10 mg /kg) na presença e na ausência de 30 mg /kg de probenecida (PB), um inibidor de transportadores de membrana. Métodos validados foram utilizados para a quantificação do fármaco em diferentes matrizes. As concentrações cerebral e hepática totais foram investigadas através da técnica de homogeneizado de tecido. Além disso, a fração livre no plasma (fu) e a penetração nos eritrócitos também foi realizada. Resultados: QTP apresentou farmacocinética linear na faixa de doses investigadas, é um substrato para transportadores de efluxo na BHE. Diferenças foram observadas na fu da QTP até 2 h após administração de QLNC indicando que LNC do tipo III promove uma liberação sustentada do fármaco do carreador. QLNC não foi capaz de alterar o coeficiente de partição nos eritrócitos determinado in vitro. As concentrações cerebrais e hepáticas totais foram aumentadas após administração da formulação de nanocápsulas, porém, as concentrações cerebrais livres não foram alteradas em comparação com o QTP em solução. Após administração de PB o fator de penetração da QTP livre no cérebro foi reduzido de 1,55 ± 0.17 para 0,94 ± 0,15. Porém, essa inibição pela probenecida não teve efeito na penetração cerebral de QLNC (0,88 ± 0,21 – 0,92 ± 0.13) provavelmente devido ao fato da QTP ser carreada pela LNC e não estar disponível para interagir com transportadores. Conclusão: Considerando todos os resultados sugere-se que as LNC do tipo III carreiam a QTP através da circulação sistêmica até o parênquima cerebral. / Introduction: Blood-brain barrier (BBB) hinders the delivery of therapeutics to central nervous system due to the endothelial cells tight junctions, which restrict paracellular transport of substances, and the expression of influx and efflux transporters, which modulate drugs access to the brain. Lipid-core nanocapsules (LNC) have been proposed as drug carriers to improve brain delivery by modulating drug pharmacokinetics (PK). However, little in know about this modulation process and it is not clear whether the LCN carry the drug through the BBB or increase free drug penetration due to changes in the barrier permeability. Objective: The work aimed to investigate the alterations in the model drug quetiapine (QTP) plasma PK and brain penetration following nanoencapsulation into LNC (QLNC) using microdialysis. Methods: QLNC (1 mg.mL-1) were obtained by nanoprecipitation and presented small particle size (143 ± 6 nm), low polidispersion index (PI < 0.1), high incorporation efficiency (96%), negative zeta potential (–7.65 ± 0.815 mV) and acidic pH. TEM photomicrography showed spherically shaped particles and absence of aggregation. Animal studies approved by CEUA/UFRGS. Total plasma and free plasma and brain concentrations, last two determined by microdialysis, were analyzed after QLNC (5 mg/kg) and free drug (FQ – 5 and 10 mg/gk) i.v. dosing to Wistar rats alone or following probenecid (PB), an influx transporter inhibitor, i.v. administration (30 mg/kg). Drug was quantified in all matrices by validate LC/UV methods. Total brain and liver concentration after FQ and QLNC dosing were investigated in tissues homogenate. Furthermore, QTP free fraction (fu) in plasma and erythrocyte penetration were determined. Results: QTP presented linear PK in the dose range investigated and is substrate to influx transporters at the BBB. Differences observed on QTP fu up to 2 h after QLNC dosing indicate a drug slow release in the blood stream loaded into the LNC type III nanocarrier for this period of time. The LNC did not altered QTP erythrocytes partition coefficient. Total brain and liver concentrations were increased after QLNC dosing but free brain concentrations were not altered in comparison with FQ dosing. After PB dosing, QTP brain penetration was reduced from 1.55 ± 0.17 to 0.94 ± 0.15 when FQ was administered but the inhibition of influx transporters had no effect on QLNC brain penetration (0.88 ± 0.21 to 0.92 ± 0.13) probably because QTP is loaded into the LNC and not available to interact with transporters. Conclusions: Taking together these results suggested that LNC type III carries QTP in the blood stream and delivers the drug to the brain. Read more
|
125 |
ContribuiÃÃo ao Estudo da ImprimaÃÃo Betuminosa das Bases RodoviÃrias do Estado do Cearà / CONTRIBUTION TO THE STUDY OF BITUMINOUS PRIME COAT ON ROADÂS BASE LAYERS OF CEARà STATEAntonio Nobre Rabelo 18 December 2006 (has links)
A imprimaÃÃo betuminosa pode ser definida como a aplicaÃÃo de uma camada de material asfÃltico sobre uma base granular, com a finalidade de melhorar suas qualidades tecnolÃgicas. Nos pavimentos das rodovias de baixo volume de trÃfego o papel da imprimaÃÃo à ainda mais importante para o seu desempenho, tendo em vista a reduzida espessura dos seus revestimentos, aliada à sua pouca ou inexistente funÃÃo estrutural. Esse trabalho tem como objetivo principal investigar os principais fatores que influenciam na penetraÃÃo da imprimaÃÃo betuminosa para bases de pavimentos de rodovias de baixo volume de trÃfego do estado do CearÃ. Para tanto, foram coletadas amostras de solos na regiÃo do agropÃlo Baixo Jaguaribe, o qual foi selecionado pela sua importÃncia no cenÃrio econÃmico e social do estado. As amostras coletadas foram submetidas aos ensaios de caracterizaÃÃo, granulometria conjunta, Proctor, CBR e expansÃo na energia intermediÃria. Para preparaÃÃo dos corpos de prova submetidos aos ensaios de imprimaÃÃo foi realizada uma adaptaÃÃo do processo de compactaÃÃo executado no cilindro Proctor para o cilindro Marshall. Os materiais betuminosos empregados para execuÃÃo dos ensaios de imprimaÃÃo foram a emulsÃo RM-1C, o asfalto diluÃdo CM-30 e uma mistura produzida a partir da adiÃÃo do lÃquido da castanha de caju (LCC), ao cimento asfÃltico de petrÃleo (CAP). Os resultados obtidos do experimento revelaram que a imprimaÃÃo à uma operaÃÃo bastante complexa, que sofre a interferÃncia de diversos fatores, tais como: o tipo e a taxa de ligante aplicado, as condiÃÃes de preparo da superfÃcie da base, umidade de compactaÃÃo, etc. Verificou-se tambÃm, que o LCC pode ser utilizado satisfatoriamente, à luz da penetraÃÃo, como diluente asfÃltico. / Bituminous prime coat can be defined as the application of an asphalt film layer on a granular base, for the improvement of its technological qualities. In pavements subjected to the role of the prime coats is even more important due to the reduced thickness of the surface and its low or inexistent structural function. The purpose os this work is to investigate the main factors that affect the penetration of the bituminous prime coat in bases layers with traffic low volume in the state of CearÃ. Soil samples were collected in the agrozone of Baixo Jaguaribe. This region was selected because of importance in the economic and social scene of the state. The collected samples were submitted to characterization tests, gradation, Proctor, CBR and expansion considering the intermediate energy. An adaptation of the compacting process was done for preparing the samples submitted to the prime coat tests. The change in the procedure consisted in compacting through the Marshall cylinder, instead of the Proctor cylinder. The procedures of the Villiborâs methodology were adapted, as well. The bituminous materials used in the prime coat tests were the emulsion RM-1C and cutback CM-30. It was also used a binder produced with the addition of the liquid of the cashew nut (LCC) to the asphalt cement. Results observed of the experiments had disclosed that the prime coat is a complex material, itâs affect by many factors, such as: the type and the rate the applied binder, the preparing conditions of the base surface, moisture content in compaction, etc. It was also verified that the LCC can satisfactorily be used as cutback, observing the parameter of penetration. Read more
|
126 |
Micro-leakage and Enamel demineralisation : a comparative study of three different adhesive cementsElshami, Marrow January 2016 (has links)
Magister Scientiae Dentium - MSc(Dent) / Introduction: Micro-leakage and enamel demineralization is still a major challenge in dental practice. It can lead to formation of demineralization lesions around and beneath the adhesive–enamel interface (Mali et al., 2006). Enamel demineralization adjacent to orthodontic brackets is one of the risks associated with orthodontic treatment. The prevention of demineralization during orthodontic treatment is therefore essential for aesthetic reasons and to circumvent the onset of caries. Aim: To assess micro-leakage and enamel demineralization around orthodontic direct attachments (brackets) using three different orthodontic cements. Materials and methods: In this in-vitro study, intact (non carious) extracted human premolars were used to compare the micro-leakage and enamel demineralization of three different cements (Fuji Ortho LC, Rely X luting 2 and Transbond XT). The dye penetration technique was used to evaluate micro-leakage on extracted human premolars. Micro-hardness testing was performed on 21 teeth to determine enamel demineralization. Sixty teeth were randomly divided into 3 groups of twenty teeth each. Direct attachments were cemented on each tooth using 3 different cements; Fuji Ortho LC (GC Fuji II LC GC Corporation Tokyo, Japan), (group 1), Rely X luting 2 cement (3M ESPE dental product, USA), (group 2), Transbond XT Light Cure (3M Unitek, Monrovia, Calif), (group 3). After the orthodontic direct attachments were fitted, they were exposed to 500 thermo-cycles between 5°C and 55°C, with a dwell time of 15 seconds in a buffered (pH 7) 1% methylene blue dye solution (Grobler et al, 2007). The specimens were viewed under a stereomicroscope (Nikon, Japan) at magnification of 40 times. Photographs of each specimen were taken with a Leica camera (Leica DFC 290 micro-systems, Germany) fitted onto a stereomicroscope. The ACDsee photo editing programme was used to transfer the photographs to a computer to measure the dye penetration along the enamel–adhesive and adhesive–bracket interfaces, both on the gingival and occlusal edge at × 40 magnification. For the demineralization sample, 21 teeth were divided into 3 groups of seven teeth each, where direct attachments were cemented using each of the 3 cements, group 1, Fuji Ortho LC (GC Fuji II LC GC Corporation Tokyo, Japan); group 2, Rely X luting 2 cement (3M ESPE dental product, USA) and group 3, Transbond XT Light Cure (3M Unitek, Monrovia, Calif). A digital hardness tester with Vickers diamond indenter (Zwick RoellIndentec (ZHV; Indentec UK) was used to measure surface micro-hardness of enamel before and after attaching the brackets. Ten indentations were made on the enamel surface of each tooth before bonding the brackets with a 300g load applied for 15 seconds to establish the baseline hardness value. After de-bonding the brackets, the hardness was measured again in the same area as mentioned above to determine the degree of enamel demineralization (softening). Result: The result showed statistically significantly lower levels of micro-leakage for Transbond XT (P= <0.001). The amount of micro-leakage on the margins was significantly higher in the gingival portion (P <0.05) as compared with the occlusal margin. Enamel micro-hardness tests before bonding using the three different cements showed that the variances are not significantly different (Chi-squared = 3.051, df = 2, p-value = 0.218). However, the micro-hardness tests done after bonding and thermo-cycling was statistically significantly different (Chi-squared = 13.435, df = 2, p-value = 0.001). Clearly, the Transbond XT group had less hardness, implying greater demineralization than the Fuji Ortho LC and Rely X luting 2 groups. Two sample t-tests show that mean value for the Fuji Ortho and Rely X luting 2 were not significantly different from each other (t = -0.636, df = 12, p-value = 0.537). The mean value for Transbond XT differed significantly from both the other two means: Transbond XT vs Fuji Ortho LC (t = 3.249, df = 6.9, p-value = 0.014). Transbond XT vs Rely X luting 2 (t = 3.493, df = 6.8, p-value = 0.011). Conclusions: This study showed that Fuji Ortho LC and Rely X luting 2 show more micro-leakage than Transbond XT. However Transbond XT had significant lower micro-leakage, less hardness (greater demineralization) than the Fuji Ortho LC and Rely X luting 2. This may have been due to the fluoride release which significantly reduces demineralization. Therefore the Fuji Ortho LC and Rely X luting 2 may be recommended for prevention of demineralization during orthodontic treatment. Read more
|
127 |
Pénétration et décontamination cutanée des actinides / Skin penetration and decontamination of actinidesTazrart, Anissa 14 March 2017 (has links)
Les actinides sont des radioéléments couramment manipulés par les travailleurs de l'industrie nucléaire et font partie de la menace NRBC (nucléaire, radiologique, biologique, chimique). La contamination cutanée représente une voie d'exposition majeure de ces agents radiologiques. La décontamination de la peau est donc cruciale pour empêcher une dispersion de la contamination et l'absorption systémique du contaminant par la peau. Ce travail s'est attaché à évaluer les profils de pénétration cutanée de deux actinides : l'américium et le plutonium, sous différentes formes, dans un modèle d'étude ex vivo, la peau d'oreille de porc. L'efficacité de décontamination de différents produits usuels a également été testée sur ce modèle, mais aussi sur un modèle in vitro de poudre de couche cornée bovine. Pour compléter l'étude de la décontamination, l'efficacité d'une formulation d'hydrogel de DTPA a également été testée. La détermination de la distribution de la contamination dans la peau a été réalisée à l'aide de différentes techniques d'imagerie : l'autoradiographie par émulsion, le TASTRAK ou encore l'iQID camera. Les résultats ont montré une grande différence dans les profils de pénétration et de rétention des actinides lorsqu'ils sont en solution aqueuse modérément soluble ou en solution organique dans un mélange de solvant. De plus, cette dernière forme modifie fortement la structure cutanée, menant à une forte augmentation de la pénétration cutanée. Les résultats des protocoles de décontamination montrent une efficacité égale du savon (Trait rouge®) comparé au DTPA, qui est le traitement décorporant utilisé également en décontamination. La formulation en hydrogel présente une efficacité supérieure pour le traitement de solutions organiques et met en évidence l'intérêt de développer d'autres formulations galéniques / Actinides are alpha-emitting radioactive elements handled by nuclear industry workers and are part of the NRBC threat (nuclear, radiological, biological, and chemical). Skin contamination represents a major exposure route for these radioelements. Skin decontamination is therefore essential to prevent any dispersion of contamination and systemic absorption through the skin. This work focused the evaluation of skin penetration behavior of two actinides: americium and plutonium, in different forms, in an ex vivo model, pig ear skin. The decontamination efficacy of various products was tested on this model as well as an in vitro model of bovine hide powder. The efficacy of a new DTPA hydrogel formulation was also tested. The localization of in different skin layers was carried out using various imaging techniques: emulsion autoradiography, solid track autoradiography, TASTRAK or iQID camera. Data showed differences in penetration, retention and localization profiles of the different actinides used in moderately soluble aqueous solution or in a solvent mixture. In addition, the latter modifies skin structure that is associated with an increase in skin penetration. Radioactivity activity measurements in skin layers agreed well with distribution as shown by the different autoradiography techniques. The results of decontamination protocols showed an equal efficacy of the soap (Trait rouge®) as compared to DTPA, that is used for decorporation therapy and also for decontamination. The hydrogel formulation showed a superior efficacy for the treatment of organic solutions and demonstrates the interest for development of other pharmaceutical formulations Read more
|
128 |
Criteria of design improvement of shaped charges used as oil well perforatorsElshenawy, Tamer Abdelazim January 2012 (has links)
In addition to its various military applications, shaped charges have been used in oil industry as an oil well perforator (OWP) to connect oil and gas to their reservoirs. The collapse of the liner material under the explosive load produces a hypervelocity jet capable of achieving a deep penetration tunnel into the rock formation. The achieved penetration depends on the OWP design, which includes the geometry and the material of the explosive and the liner as well as the initiation mode and the casing of the shaped charge. The main purpose of this research is to assess the performance of OWP with different design aspects in terms of its penetration depth into concrete material.This research employed the Autodyn finite difference code to model the behaviour of OWPs in the stages of liner collapse, jet formation and jet penetration. The design parameters of OWPs were studied quantitatively to identify the effect of each individual parameter on the jet characteristics and the jet penetration depth into concrete material according to the API-RP43 standard test configuration. In order to validate the Autodyn jetting analysis, this research compared the jetting simulation results of copper OWP liners with those obtained from flash x-ray measurements while the numerical jet penetration into the laminated concrete target was validated experimentally by the static firing of OWPs. Above-mentioned experiments were designed and performed in this project.The validated hydrocode was implemented in this research to study the effects of the concrete target strength, the liner material and the liner shape on the jet penetration depth into concrete targets.For the target strength, the traditional virtual origin (VO) penetration model was modified to include a strength reduction term based on Johnson’s damage number and the effect of the underground confinement pressure using Drucker-Prager model. The VO analytical model is also implemented in the liner material study to account for the jet density reduction phenomena and its induced reduction of jet penetration capability. The jets obtained from machined copper and zirconium liners and from copper-tungsten powder liner all exhibited the density reduction phenomena. The modified VO model considers the non-uniform distribution of jet density based on the jet profile analysis using Autodyn and the experimental soft recovery for some tested liners. The results lead to a modified VO penetration model including the non-uniform jet density effect.For zirconium liner material, numerical and analytical studies were conducted for different flow velocities and different collapse angles in order to determine the boundaries between the jetting and non-jetting phases and whether a coherent or a non-coherent jet will form. This study indicated that the suggested four different liner shapes (i.e. the conical, the biconical, the hemispherical and the bell) will produce coherent jet when the zirconium is used as OWP liner.The validated Autodyn hydrocode is also used in this thesis to calculate the velocity difference between two neighbouring zirconium jet fragments. The velocity difference is related directly to the breakup time of an OWP jet, and thus, it is calculated for a range of zirconium liners with different liner wall thicknesses. The calculated values of velocity difference gave a clear insight for the breakup time formulae for zirconium jet in terms of the liner thickness and the charge diameter. Read more
|
129 |
Measurement of displacements in granular systems in response to penetration and compactionAddiss, John January 2010 (has links)
The research reported in this thesis is concerned with the flow of granular systems in response to penetration and compaction. The technique of Digital Speckle Radiography (DSR), which involves analysis of flash X-ray images, has been applied to measure the internal displacement fields within large opaque granular samples. Large samples are desirable as the measured displacements are more representative of the bulk. Current DICC algorithms were found to be unsuitable for analysis of X-ray images of large samples. The large contrast variations present in such X-ray images, due to the X-ray beam profile, sample geometry and the high X-ray absorbance of metal penetrators, are shown to cause significant errors in the calculated displacement fields. A study of image normalisation techniques was carried out, and the effect of each technique on the accuracy of the measured displacements was investigated. A new DICC algorithm for use in DSR was produced which includes image normalisation techniques to correct for uneven contrast in the images. This new DICC algorithm was shown to be far more effective at analysing X-ray images of large samples. This improved DSR technique was applied to measure the internal displacements within a large sample of sand during penetration by projectiles with different nose-shapes (flat, ogive-2 and hemispherical) and at different rates (1.5 mm/min to 200 m/s). The improved technique was found to provide high-resolution displacement data illustrating the response of the material. The dominant material response at low rates (1.5 mm/min) was found to be splitting of the material ahead of the projectile tip, followed by bulk reverse-flow of material towards the penetration face. At the higher rates (200 m/s), the dominant response was compaction of the material ahead of the projectile tip. The transition between the two regimes was found to occur between velocities of 5 and 19 m/s. The streamlined ogive-2 projectile nose-shape was shown to be the most effective for penetration, in that it caused less disruption of the material ahead of the projectile, lost less energy during the early stages of penetration in the dynamic experiments and more effectively split the material ahead of the projectile tip, a process which was shown to be important at all rates of penetration. The compaction properties of a particulate mixture and a granular material, including the effect of factors such as porosity, initial particle arrangement and force chain formation, were investigated. Samples which were conducive to the formation of force chains spanning the whole sample were discovered to have anomalously high strengths. Small amounts of added water were shown to increase the compactability, by lubricating the grain contact points, but larger amounts of water decreased the compactability. Read more
|
130 |
A Model-driven Penetration Test Framework for Web ApplicationsXiong, Pulei January 2012 (has links)
Penetration testing is widely used in industry as a test method for web application security assessment. However, penetration testing is often performed late in a software development life cycle as an isolated task and usually requires specialized security experts. There is no well-defined test framework providing guidance and support to general testers who usually do not have in-depth security expertise to perform a systematic and cost-efficient penetration test campaign throughout a security-oriented software development life cycle.
In this thesis, we propose a model-driven penetration test framework for web applications that consists of a penetration test methodology, a grey-box test architecture, a web security knowledge base, a test campaign model, and a knowledge-based PenTest workbench. The test framework enables general testers to perform a penetration test campaign in a model-driven approach that is fully integrated into a security-oriented software development life cycle. Security experts are still required to build up and maintain a web security knowledgebase for test campaigns, but the general testers are capable of developing and executing penetration test campaigns with reduced complexity and increased reusability in a systematic and cost-efficient approach.
A prototype of the framework has been implemented and applied to three web applications: the benchmark WebGoat web application, a hospital adverse event management system (AEMS), and a palliative pain and symptom management system (PAL-IS). An evaluation of the test framework prototype based on the case studies indicates the potential of the proposed test framework to improve how penetration test campaigns are performed and integrated into a security-oriented software development life cycle. Read more
|
Page generated in 0.0835 seconds