Spelling suggestions: "subject:"permittivity"" "subject:"permittivitty""
91 |
Kapalné elektrolyty pro lithno-iontové akumulátory / Liquid electrolytes for lithium-ion accumulatorsŠtichová, Zuzana January 2011 (has links)
The aim of this master´s thesis was the measurement of electrical conductivity and dynamic viscosity of the electrolytes. Based on these measurements to verify Walden theorem between measured variables. Electrolytes were used on sulfolane base in combination with propylene carbonate and salt. The thesis also deals with the measuring method of dielectric properties of electrical and optical method with a refractometer. The freezing point of combination of sulfolan and propylene carbonate were determined by cryoscopy.
|
92 |
Studium feroelektrických materiálů / Study of ferroelectric materialsKos, Lukáš January 2012 (has links)
This work is focused on the study of perovskite ferroelectric materials group and monitoring changes their dielectric parameters in temperature and frequency dependence Is described scrystallographic systems of barium titanate and their influence on material properties. The measured values are mathematically interpreted using the Curie – Weiss law and discussed about the influence of strontium titanite on important dielectric parameters.
|
93 |
Měření komplexní permitivity materiálů metodou ve volném prostoru / Free space method for measurement of complex permittivityNekovář, Jiří January 2012 (has links)
The aim of this thesis is the development of the workplace for the complex permittivity measurement by free space method. At the beginning of this thesis, the method is described. Further attention is focused on the discussions concerning electromagnetic properties of materials, comparison of the methods used for complex permittivity measurement, interactions of planar electromagnetic wave with planar infinite dielectric slab of general environment and description of radiation patterns of microwave antennas. In the rest of the thesis, the measuring workplace for the free space method is designed and fabricated. A pyramidal horn antenna is selected as a radiator. The antenna is designed with coax to waveguide transition in CST Microwave Studio, and than fabricated in two samples and measured. Finally, the fabricated measuring workplace is exploited for the complex permittivity measurement.
|
94 |
Měření permitivity materiálů koaxiální sondou / Permittivity measurement of materials by coax probeRyba, Ivan January 2015 (has links)
This thesis describes possibilities of measuring permittivity of various materials, especially with coaxial probe method. It describes character of measuring method, hardware requirements and how to calculate values from the measured. Objective of this thesis is to design measuring station for measuring permittivity of materials with coaxial probe including calibration set. Code in Matlab is also programmed and whole station is tested with known samples to discuss measurement accuracy.
|
95 |
Evaluation de la compacité des enrobés bitumineux et caractérisation large bande des propriétés diélectriques des roches. / Compactness assessment of asphalt pavement and wideband characterization of rocks dielectric propertiesAraujo, Steven 18 December 2017 (has links)
Le contrôle des chaussées neuves en génie civil est primordial pour assurer sa bonne miseen oeuvre et lui conférer une durée de vie optimale. Dans cet objectif, divers paramètresphysiques nécessitent d'être scrupuleusement calibrés et contrôlés afin d'éviter une dégradation précoce de la chaussée et des problèmes de sécurité pour les conducteurs qui l'empruntent. De plus, les coûts associés à la mise en place et à la maintenance des chaussées sont considérables. Parmi les propriétés qui requièrent une attention particulière, la compacité, qui est indicative de la quantité d'air en volume dans la chaussée, est celle qui nous intéresse dans cette étude. Actuellement, seulement deux méthodes en laboratoire (en Europe) sont considérées comme des méthodes normalisées pour déterminer la compacité. Néanmoins, ces techniques sont destructives et/ou nucléaires ce qui est un frein majeur à leur utilisation. Durant ces deux dernières décennies, de nouvelles techniques électromagnétiques (non nucléaires et non destructives) ont émergé et ont prouvé leur forte utilité dans le domaine de la géophysique et du génie civil et plus particulièrement pour la détermination de la compacité. Cependant, ces nouvelles techniques nécessitent de prendre un certain nombre de précautions pour déterminer la compacité. Tout d'abord, elles permettent de mesurer la permittivité diélectrique du matériau en question. Ainsi pour déterminer la compacité, il est nécessaire d'utiliser des lois de mélange électromagnétiques. L'utilisation de ces modèles requiert une connaissance précise des constituants qui composent la chaussée ainsi que de leurs propriétés (masse volumique et permittivité diélectrique). La première partie de ce travail démontre la pertinence d'utiliser un radar à sauts de fréquences pour déterminer la compacité. L'étude de plusieurs lois de mélange électromagnétiques a été réalisée et les modèles présentant les meilleurs résultats ont été sélectionnés. Cependant, ces techniques font face de nos jours à un problème majeur. En effet, l'utilisation de matériaux recyclés est de plus en plus fréquente pour la construction de nouvelles chaussées ce qui rend la détermination de la compacité encore plus difficile par des méthodes électromagnétiques. Par conséquent, plusieurs méthodologies ont été développées, et sont proposées pour déterminer la compacité d'une nouvelle autoroute qui comporte des matériaux recyclés. La seconde partie de ces travaux de recherche porte sur la caractérisation diélectrique de plusieurs roches qui sont les éléments principaux d'une chaussée. Cette caractérisation est validée de basses à hautes fréquences mais aussi en fonction de la température. Les résultats montrent que à haute fréquence, la permittivité est principalement dépendante de la densité et de la composition chimique de la roche. En revanche, lorsque la fréquence d'investigation diminue et que la température varie, d'autres phénomènes apparaissent et changent dramatiquement le comportement diélectrique de la roche. Il a également été montré que l'eau joue un rôle majeur dans le comportement diélectrique à basse fréquence de la roche. Ces phénomènes se répercutent à "haute fréquence" par de très faibles variations qui pourraient expliquer les déviations obtenues par les méthodes électromagnétiques capacitives qui fonctionnent dans la région du MHz et qui sont également utilisées pour le contrôle de la compacité des chaussées neuves. / The control of new paved road is primordial to ensure its quality as well as its lifetime. Thus, several physical properties need to be well calibrated and controlled in order to avoid early degradations and safety issues for the drivers. Furthermore, the coast associated to the road building and the road maintenance is significant which makes the implementation of asphalt pavement according to the standard even more important. Among the properties that need attentions, the compactness which is indicative of the air void concentration in the asphalt pavement is the one we are interested in. Currently, only two methods in laboratory (in Europe) are considered as standards to assess the compactness. Nevertheless, these techniques are either nuclear or destructive which is a major hindrance. In the past two decades, new electromagnetic (EM) techniques have emerged and proved their great utility for geophysics or civil engineering applications and more importantly for the compactness assessment. However, these non-destructive and non-nuclear methods require many special precautions for the compactness assessment. First of all, they allow to measure the dielectric permittivity of the investigated material. Then to figure out the compactness, the use of EM mixing models is required. This leads to the accurate knowledge of every components constituting the asphalt pavement and their related properties (density and permittivity). The first main part of this work spotlights the relevance of using a step frequency radar for the compactness assessment. The study of several EM mixing models is performed to select the most appropriate ones. Nowadays, one of the challenges to address for these techniques is that the use of recycled materials is more and more commonly implemented for new roads building. Indeed, as the knowledge of the component properties is required, this makes the compactness assessment even more difficult. As a consequence, several methods have been developed and are proposed to assess the compactness of a new paved highway containing recycled asphalt pavement. The second main part of this research is the dielectric characterization of many rocks which are the main component of the asphalt pavement. This characterization is validated from low to high frequencies and also as a function of the temperature. The results show at high frequency that the permittivity is mainly dependent on the density and the chemical composition of the rock. However, as the frequency decreases and the temperature varies, this is not longer true and additional phenomena appear and drastically change the dielectric behavior of the rock. Also, it has been shown that the water plays a major role on the dielectric behavior at low frequency. This phenomena are reflected partially by small variations at "high frequency" that could explained the deviations obtained for capacitive techniques which work in the MHz region and which are used also for the compactness assessment.
|
96 |
Hustotní a elektrostatické vlastnosti vody a jejich využití v termodynamice vodných specií a rozpustnosti minerálů za vysokých teplot a tlaků / Volumetric and electrostatic properties of water and their application to aqueous thermodynamics and mineral solubility at high temperatures and pressuresHanková, Barbora January 2018 (has links)
Hydrothermal fluids are important mass and heat transfer agents in the Earth's crust and mantle. Aside from their transport role, the aqueous fluids act as reactants or products in rock environment during diverse processes ranging from partial melting, magmatic and metamorphic devolatilization. This study evaluates the effect of equations of state and thermodynamic data for aqueous species on prediction of mineral solubility in aqueous fluids at high temperatures and pressures employing the Helgeson-Kirkham-Flowers model (HKF). These calculations require: (i) volumetric properties of water; (ii) dielectric properties of water; (iii) aqueous species thermodynamic properties. A comparison of ten equations of state against the IAPWS scientific standard reveals that volumetric properties of water up to 1200 řC and 50 kbar are predicted within 5 %, except at low pressure (below 2 kbar), temperatures higher than 1000 řC, and the liquid-vapor equilibrium curve, particularly in the proximity of the critical point of water. The deviations of volumetric and electrostatic properties of water propagate into the mineral solubility calculations. For quartz and corundum these deviations lead to discrepancy in mineral solubility of up to half an order of magnitude for molal concentrations. These discrepancies...
|
97 |
A Multi-Wilkinson Power Divider Based Complex Reflection Coefficient DetectorCooper, James Roger 19 May 2010 (has links)
In the field of applied electromagnetics, there is always a need to create new methods for electrical characterization of materials, systems, devices, etc. Many applications need small and/or inexpensive equipment in performing these characterizations. The current method for making measurements of electrical properties at frequencies above 300 MHz, the transmission/reflection method, has severe limitations in these areas due large size and high price of the necessary equipment for making them. Therefore, presented herein is the conceptualization, design and analysis of a complex reflection coefficient detector which is relatively small, lightweight, and inexpensive.
A reflection coefficient detector is a device designed to isolate and compare a driving signal against a reflected signal. The reflection of the second signal is caused by a mismatch between the device's output impedance and a load's input impedance. By comparing the driving, or transmitted, signal and the reflected signal, the reflection coefficient at the boundary can be calculated. This coefficient can be used to calculate a load's input impedance, or a material's permittivity when combined with an attached probe's characteristics.
The reflection coefficient detector presented is built using microstrip and surface mount components. This makes the device comparably cheap. Its design is based upon five Wilkinson Power Dividers which lends itself to be scaled down for implementation in on-chip, and other micro- and nano- scale systems.
The accuracy and functionality of the device will be demonstrated through the use of S-Parameters measurements and CAD simulations. Through this, it will be shown that the device is a practical form of making measurements in applications which are otherwise restricted to certain limitations. In closing, applications, alternative designs and future advancements of the complex reflection coefficient detector will be discussed.
|
98 |
Miniaturization of Microstrip Patch Antennas for Gps ApplicationsHolland, Steven S 01 January 2008 (has links) (PDF)
The desire to incorporate multiple frequency bands of operation into personal communication devices has led to much research on reducing the size of antennas while maintaining adequate performance. GPS is one such application, where dual frequency operation, bandwidth and circular polarization pose major challenges when using traditional miniaturization techniques. Various loading methods have been studied to reduce the resonant frequency of the antenna – high permittivity dielectric loading, slot loading and cavity loading – while examining their effects on bandwidth and gain. The objective of this thesis is to provide guidelines on what is achievable using these miniaturization methods and insight into how to implement them effectively.
|
99 |
Hydrolysis of Acetic Anhydride in Water/Tetrahydrofuran Co-solvent Systems Using Eyring Activation Energy Analysis.Afolaju, Wasiu ALOWONLE, Mr, Dane, SCOTT, Dr 12 April 2019 (has links)
This study determines the activation energy parameters for the hydrolysis of acetic anhydride in water/tetrahydrofuran solutions. These values are needed for studies to quantify the effect of the bulk electrostatic environment solvent-solute interactions on the hydrolysis reaction rate. Hydrolysis of an acetic anhydride with water or under basic conditions yields acetic acid. The current study is based on simple hydrolysis of acetic anhydride which produces acetic acid decreasing the pH over time. Simple hydrolysis is monitored by measuring pH versus time at temperatures ranging from 20.0 to 35.0 oC and mole fraction of water ranging from 0.75 to 1.00. Measuring pH over time has advantages over other methods such as conductivity, UV-vis spectroscopy, temperature scanning, FTIR, calorimeter as it is simple, inexpensive and reproducible. Experimental results were used to determine activation enthalpy and entropy for hydrolysis of acetic anhydride using tetrahydrofuran as the co-solvent. These values were determined using the Eyring rate equation under iso-mole fraction and isothermal conditions. Analysis was performed to determine if the activation enthalpy and entropy are temperature dependent. Eyring plots are expected to be linear for iso-mole fractions and isothermal conditions of tetrahydrofuran.
|
100 |
Liquid Dielectric Spectroscopy and Protein SimulationMellor, Brett Lee 05 July 2012 (has links) (PDF)
Protein electrical properties have been studied using dielectric relaxation measurements throughout the past century. These measurements have advanced both the theory and practice of liquid dielectric spectroscopy and have contributed to understanding of protein structure and function. In this dissertation, the relationship between permittivity measurements and underlying molecular mechanisms is explored. Also presented is a method to take molecular structures from the Protein Data Bank and subsequently estimate the charge distribution and dielectric relaxation properties of the proteins in solution. This process enables screening of target compounds for analysis by dielectric spectroscopy as well as better interpretation of protein relaxation data. For charge estimation, the shifted pKa values for amino acid residues are calculated using Poisson-Boltzmann solutions of the protein electrostatics over varying pH conditions. The estimated internal permittivity and estimated dipole moments through shifted pKa values are then calculated. Molecular dynamics simulations are additionally used to refine and approximate the solution-state conformation of the proteins. These calculations and simulations are verified with laboratory experiments over a large pH and frequency range (40 Hz to 110 MHz). The measurement apparatus is improved over previous designs by controlling temperature and limiting the electrode polarization effect through electrode surface preparation and adjustment of the cell's physical dimensions. The techniques developed in this dissertation can be used to analyze a wide variety of molecular phenomena experimentally and computationally, as demonstrated through various interactions amongst avidin, biotin, biotin-labeled and unlabeled bovine serum albumin, beta-lactoglobulin, and hen-lysozyme.
|
Page generated in 0.0487 seconds