• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanisme de vieillissement à très longue échéance des aciers inoxydables austénoferritiques

Novy, Stéphane 27 November 2009 (has links) (PDF)
Comprendre l'origine de la fragilisation des aciers austéno-ferritiques utilisés dans les coudes moulés des circuits primaires des centrales nucléaires est une étape clé pour l'anticipation de leur vieillissement. Cette prédiction nécessite une caractérisation et une compréhension du mécanisme de transformation de phase à l'origine de ce constat : la décomposition de la ferrite. Ainsi, de façon duale, des ferrites d'aciers vieillis plus de 20 ans, sur site ou en laboratoire ainsi qu'à différentes températures, ont été analysées par sonde atomique tomographique et un travail de simulation de la décomposition de la ferrite d'alliages modèles Fe-Cr a été initié. Afin de valider les paramètres utilisés en simulation Monte Carlo, une étude expérimentale de la démixtion d'un alliage Fe-20 % at. Cr vieilli à 500°C a été réalisée. Cette étude expérimentale a montré qu'un régime de germination non classique (GNC) intervient dans cet alliage. La simulation de la décomposition de la ferrite dans le même alliage, vieilli à la même température, n'a pas révélé l'enrichissement progressif des précipités de phase α' caractéristique de la GNC. L'étude d'aciers vieillis plus de 20 ans a permis de confirmer que les aciers vieillis en laboratoire sont représentatifs de ceux vieillis sur site (pour T < 350°C), que la phase G (précipitation intermétallique à l'interface des phases α/α') n'influence pas la fragilisation de la ferrite et que la différence de traitement thermomécanique n'est pas déterminante quant à l'écart de décomposition observé dans ces aciers.
2

Influence des éléments d'alliage sur la cinétique de vieillissement de la ferrite d'aciers inoxydables austéno-ferritiques moulés / Influence of alloying elements on the aging kinetics of cast austenitic ferritic stainless steel ferrite

Badyka, Romain 06 December 2018 (has links)
Les aciers inoxydables austéno-ferritiques moulés sont utilisés pour certains composants ducircuit primaire des centrales nucléaires de génération II. Aux températures de service (285 °C -325 °C), des modifications de propriétés mécaniques sont observées. Elles sont imputables auxtransformations de phases au sein de la ferrite de ces aciers : la décomposition spinodale (DS) en phaseα (riche en Fe) et α’ (riche en Cr) et la précipitation de la phase G aux interfaces α/α'. S'il est admisque la composition de l’acier influe sur l’évolution des transformations de phase de la ferrite (lesaciers moins riches en Ni et Mo sont moins sensibles au vieillissement), aucune étude, à ce jour, n'apermis de mettre en évidence l'influence du Ni, Mo, Mn et des synergies éventuelles sur levieillissement des aciers ni de déterminer la contribution de la phase G à l'évolution des propriétésmécaniques. Dans cette étude, les cinétiques des transformations de phase de la ferrite d'aciers inoxydable austéno-ferritiques pauvres en Mo et riches en Mo ainsi que de celle d'alliages modèles decomposition ciblée ont été étudiées par sonde atomique tomographique (SAT) et par mesure demicrodureté. Les travaux ont répondu aux trois questions suivantes : - Quantification de la contribution des différentes phases au durcissement : L'utilisation conjointe de modèles de durcissement et des données obtenues par la sonde a montré que, contrairement à ce qui était dit dans la littérature, la phase G est le contributeur majoritaire au durcissement pour les aciers avec Mo. Ce n'est qu'aux temps longs, lorsque la coalescence des particules de phase G intervient et que la DS est plus développée que la contribution de la DS devient prépondérante. Ceci est dû à la forte densité de particules de phase G dans ces aciers. Dans le cas des aciers sans Mo qui contiennent dix fois moins de particules en début de cinétique, la phase G et la DS ont des contributions équivalentes. – Influence du Ni, Mo et Mn : L’étude d’alliage modèles de compositions ciblées a montré que seul le Ni accélère la décomposition spinodale et que le Mn a un rôle prépondérant dans la formation des particules de phase G aux interfaces α/α’. - Efficacité d'un traitement thermique de régénération à 550 °C: Une alternative au remplacement des composants les plus vieillis pourrait être un traitement thermique dit de régénération. Les recuits à 550 °C permettent de restaurer entièrement les aciers sans Mo et partiellement les aciers avec Mo. Ceci est dû au fait que les particules de phase G ne sont pas entièrement dissoutes dans le cas des aciers avec Mo, induisant un durcissement résiduel. Dans tous les cas, la DS est entièrement dissoute. / Cast austenitic-ferritic stainless steels are used in primary circuit of 2nd generation nuclearpower plants. At operating temperature (285 °C - 325 °C), evolution of mechanical properties isobserved due to the phase transformations occurring within the ferrite: spinodal decomposition (SD)leading to the formation on a Fe rich phase (α) and a Cr rich phase (α ') and the precipitation of the G-phase at α/α' interfaces. This evolution of the mechanical properties can be prohibitive for thecomponents. If it is well known that the steel composition plays an important role on the evolution ofthe properties (steels less rich in Ni and Mo are less sensitive to aging), the role of solute elements asNi, Mo and Mn on the aging kinetics is not yet known so as the contribution of the G-phase on thehardening during the thermal aging. In this study, the aging kinetics of the ferrite of some austenitic-ferritic stainless steels with or without Mo and model alloys with tuned compositions have been studied by atom probe tomography (APT) and by micro hardness measurements. This works answered the three following questions: - Quantification of the contribution of both spinodal decomposition and G-phase precipitation on hardening of the ferrite: combination of hardening models and data obtained with APT permitted to show that G-phase precipitation is clearly the main contributor to ferrite hardness increase at early stage of ageing in Mo-bearing steels. This is due to the high number density of G-phase particles. In Mo-free steels which have ten times less G-phase particles, contributions of both spinodal decomposition and G-phase precipitation are similar. In both cases, when coarsening of G-phase particles occurs and SD is well developed, SD contribution becomes larger. - Influence of Ni, Mo and Mn on aging kinetics: The study of model alloys with tuned composition has shown that only Ni plays a role on SD by enhancing the decomposition. Mn is a key element for the precipitation of G-phase particles at α/α' interfaces. - Efficiency of regeneration heat treatment at 550 °C: an alternative to component replacement is to perform a heat treatment at higher temperature in order to restore the properties of the components. The heat treatments performed permitted to entirely restore the mechanical properties of Mo free steels and partially the properties of Mo bearing ones. This is due to the presence of undissolved G-phase particles in the case of Mo bearing alloys. In each case, SD was totally dissolved.
3

Évolution de la microstructure d’un acier inoxydable lean duplex lors du vieillissement / Microstructure evolution of a lean duplex stainless steel during aging

Maetz, Jean-Yves 10 January 2014 (has links)
Les aciers inoxydables lean duplex sont une famille d'aciers austéno-ferritiques allégés en nickel et en molybdène, qui s'est développée à la fin des années 1990. Le compromis propriétés mécaniques, propriétés de résistance à la corrosion et coût de matière première place cette famille comme une alternative intéressante aux aciers austénitiques standards, et en particulier aux 304/304L qui représentent actuellement les deux tiers de la production d'acier inoxydable. Cependant, cette famille étant relativement récente, la stabilité en température des aciers lean duplex a été relativement peu étudiée, en particulier lors de maintiens prolongés en température. Dans le cadre de cette thèse, l'évolution microstructurale d'un acier lean duplex 2101 a été étudiée, lors de vieillissements isothermes à des températures comprises entre 20 °C et 850 °C, pour des temps s'échelonnant de quelques minutes à plusieurs mois. Les cinétiques de vieillissement ont été suivies par mesures de pouvoir thermoéléctrique (PTE), à partir desquelles des états vieillis ont été sélectionnés pour être caractérisés par microscopie électronique et par sonde atomique tomographique. A des températures intermédiaires de 350 – 450 °C, la ferrite de l'acier lean duplex 2101 est sujette à la démixtion Fe-Cr et à la formation d'amas enrichis en Ni-Mn-Si-Al-Cu, malgré les faibles teneurs en nickel de cette nuance. Ces phénomènes sont détectés par une forte augmentation du PTE. Pour des températures plus élevées, à 700 °C environ, une approche multi-techniques et multi-échelles a permis de décrire précisément les mécanismes qui régissent les différentes évolutions microstructurales : la germination et la croissance de M23C6 et de Cr2N, observés dès quelques minutes de vieillissement aux joints de phases, la précipitation de la phase σ pour des temps de vieillissement plus importants qui s'accompagne d'une transformation de la ferrite δ en austénite secondaire γ2, et la transformation partielle de l'austénite en martensite lors du refroidissement des échantillons vieillis. L'effet des différentes phases sur le PTE de l'acier lean duplex peut être décrit qualitativement lors du vieillissement par une loi des mélanges. / Lean duplex stainless steels are austeno-ferritic steels with lower nickel and molybdenum contents, developed in the late 90's. Considering mechanical properties, corrosion resistance and cost of raw material, this family is an interesting alternative to standard austenitic stainless steels, which currently represent two thirds of stainless steel production. However, lean duplex steels are relatively recent and their thermal stability has been relatively little studied, especially during long term aging. In this study, the microstructural evolution of a lean duplex steel 2101 was studied during isothermal aging at temperatures between 20 °C and 850 °C, from few minutes to several months. Aging kinetics were followed by thermoelectric power measurements (TEP), from which aged states were selected to be characterized by electron microscopy and atom probe tomography. At intermediate temperatures of 350 - 450 °C, Fe-Cr demixing and precipitation of Ni-Mn-Al-Si-Cu occur in the ferrite despite the low nickel content of this grade, leading to an increase in the TEP. For higher temperatures, at about 700 °C, the mechanisms which govern the different microstructural evolutions have been described by a multi-scale approach: the nucleation and growth of M23C6 and Cr2N, observed from few minutes of aging and the σ phase precipitation, observed for longer aging time. The latter is accompanied by a transformation of δ ferrite in γ2 secondary austenite, and by the partial transformation of austenite into martensite during cooling. The effect of different phases on the TEP of the lean duplex steel can be qualitatively described during aging by a rule of mixture.

Page generated in 0.0336 seconds