• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 52
  • 37
  • 21
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 355
  • 60
  • 44
  • 42
  • 41
  • 40
  • 35
  • 34
  • 32
  • 31
  • 25
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Rôle de l'époxyde hydrolase soluble dans les maladies cardiovasculaires. / Role of soluble epoxide hydrolase in cardiovascular diseases

Duflot, Thomas 16 October 2018 (has links)
L’époxyde hydrolase soluble (sEH) est une enzyme ubiquitaire, bifonctionnelle, codée par le gène EPHX2. La partie hydrolase (sEH-H) est responsable de la dégradation de facteurs endothéliaux vasodilatateurs, les acides époxyeicosatriénoïques (EETs), alors que la partie phosphatase (sEH-P) est impliquée dans le métabolisme des acides lysophosphatidiques (LPAs).L’objectif de ce travail a été de développer des outils méthodologiques permettant d'évaluer le rôle de la sEH dans la physiopathologie des maladies cardiovasculaires.Nous avons développé une méthode de quantification par CLHP-MS² des EETs et de leurs métabolites, les acides dihydroxyeicosatrienoic acids (DHETs). L'application de cette méthode montre que la dysfonction endothéliale des patients atteints d’hypertension artérielle et de diabète de type 2 est associée à une diminution de la libération locale des EETs lors de l'augmentation du débit sanguin, notamment liée à une augmentation d’activité de la sEH-H. L’inhibition pharmacologique de la sEH-H a permis de diminuer l’inflammation et l’atteinte glomérulaire dans un modèle murin d’insulino-résistance. De plus, l’étude des polymorphismes génétiques du gène EPHX2, codant la sEH, a permis de démontrer que la fonction sEH-H joue probablement un rôle important dans le contrôle de la fonction rénale et vasculaire des patients transplantés rénaux. Enfin, les résultats expérimentaux obtenus dans un modèle d’inactivation génétique de la sEH-P et l'étude des polymorphismes génétiques d'EPHX2 chez les patients insuffisants cardiaques suggèrent un rôle important de cette partie dans la régulation du métabolisme des lipides ainsi que dans le contrôle de l’homéostasie cardiovasculaire.Ainsi, les résultats obtenus au cours de ce travail soutiennent l’intérêt de développer des inhibiteurs pharmacologiques de la sEH-H pour traiter les maladies cardiovasculaires, rénales et métaboliques chez l’homme et suggèrent que la modulation de la sEH-P pourrait également constituer une nouvelle cible d'intérêt dans la prise en charge de ces pathologies. / Soluble epoxide hydrolase (sEH) is an ubiquitous bifunctional enzyme that is encoded by the EPHX2 gene. The hydrolase activity (sEH-H) is responsible for the conversion of the endothelial vasodilator epoxyeicosatrienoic acids whereas the phosphatase activity (sEH-P) is involved in the metabolism of lysophosphatidic acids (LPAs).The aim of this work was to develop chromatographic methods and molecular biology techniques to evaluate sEH activities in cardiovascular diseases.We developed a LC-MS/MS method to quantify EETs and their metabolites, the dihydroxyeicosatrienoic acids (DHETs). Using this method, we showed that the endothelial dysfunction of hypertensive and type 2 diabetic patients is associated with a decrease in the local production of EETs during flow increase notably due to increased sEH-H activity. In a murine model of insulin resistance, pharmacological inhibition of sEH-H improved renal function by decreasing inflammation, oxidative stress and glomerular lesions. Moreover, genetic investigations of EPHX2 revealed that sEH-H may play a substantial role in the control of renal and vascular function in kidney recipients. Finally, experimental results obtained in knock-in sEH-P deficient rats and genetics findings in patients with heart failure strongly suggest that sEH-P is involved in lipid metabolism and cardiovascular homeostasis.Taken together, these results strengthen the interest of developing pharmacological inhibitors of sEH-H to be tested in patients with cardiovascular, renal or metabolic diseases and suggest that the modulation of sEH-P represents a new therapeutic target to treat these pathologies.
262

Biomimetic Membranes: : Molecular Structure and Stability Studies by Vibrational Sum Frequency Spectroscopy

Liljeblad, Jonathan F.D. January 2010 (has links)
In the research presented in this licentiate thesis the surface specific technique Vibrational Sum Frequency Spectroscopy, VSFS, combined with the Langmuir trough has been utilized to investigate Langmuir monolayers and Langmuir-Blodgett (LB) deposited mono- and bilayers of phospholipids. Their molecular structure, stability, and hydration were probed to gain additional understanding of important properties aiming at facilitating the use of such layers as model systems for biological membranes. VSFS was applied to in situ studies of the degradation of Langmuir monolayers of 1,2-diacyl-phosphocholines with identical C-18 chains having various degrees of unsaturation. The time-dependent change of the monolayer area at constant surface pressure as well as the sum frequency intensity of the vinyl-CH stretch at the C=C double bonds were measured to monitor the degradation. It was shown that a rapid degradation of the monolayers of unsaturated phospholipids occurred when exposed to the laboratory air compared to the fully saturated lipid, and that the degradation could be inhibited by purging the ambient air with nitrogen. The degradation was attributed to oxidation mediated by reactive species in the air. The molecular structure and order of Langmuir monolayers of 1,2-distearoyl-phosphocholine (18:0 PC) and their hydrating water were investigated at different surface pressures using VSFS. The spectroscopic data indicated a well ordered monolayer at all surface pressures with a more intense signal at higher pressures attributed to the subsequent increase of the number density and more ordered lipid molecules due to the tighter packing. Water molecules hydrating the headgroups or being in contact with the hydrophobic parts were observed and distinguished by their vibrational frequencies, and found to have different average orientations. Additionally, monolayers of 18:0 PC, its fully deuterated analogue, and 1,2-distearoyl-phosphoserine (18:0 PS) were Langmuir-Blodgett (LB) deposited on CaF2 substrates and VSFS was used to investigate the structure and order of the films as well as the hydrating water. The CH-region, water region, and lower wavenumber region containing phosphate, ester, carboxylic acid, and amine signals were probed to obtain a complete picture of the molecule. The data indicates that all deposited monolayers formed a well ordered and stable film and the average orientation of the aliphatic chains was determined using the antisymmetric methyl stretch. / I forskningen som presenteras i denna licentiatavhandling har den ytspecifika vibrationssumfrekvensspektroskopin, VSFS, använts tillsammans med Langmuirtråget för att studera Langmuir-monolager och Langmuir-Blod-gett (LB) deponerade monolager och bilager av fosfolipider. För att utvidga förståelsen av egenskaper som är viktiga för att underlätta användandet av dem som modellsystem för biologiska membran undersöktes såväl deras molekylära struktur som stabilitet och hydratisering. VSFS användes för att genomföra in situ-studier av nedbrytningen av Langmuir-monolager av 1,2-diacyl-fosfokoliner med identiska 18 kolatomer långa sidokedjor med varierande antal omättade kol-kol-bindningar. För att övervaka nedbrytningen mättes såväl den tidsberoende förändringen av monolagernas area vid konstant yttryck som sumfrekevensintensiteten från dubbelbindningarnas CH-vibration. När monolagerna bestående av omättade fosfolipider utsattes för laboratorieluften bröts de ner hastigt jämfört med det helt mättade monolagret. Denna nedbrytning som sannolikt orsakades av reaktiva ämnen i luften kunde inhiberas fullständigt genom att ersätta den omgivande luften med kvävgas. Den molekylära strukturen och ordningen hos Langmuir-monolager av 1,2-distearoyl-fosfokolin (18:0 PC) och deras hydratiseringsvatten undersöktes vid olika yttryck med VSFS. Den spektroskopiska datan visar att monolagerna är välordnade vid alla yttryck samt att sumfrekvenssignalens styrka ökar med ökande yttryck på grund av såväl det större antalet molekyler per ytenhet som den högre ordningen då molekylerna packas tätare. Vattenmolekyler som hydratiserar huvudgrupperna eller är i kontakt med hydrofoba delar och har olika medelorientering observerades och kunde identifieras genom sina vibrationsfrekvenser. Vidare deponerades monolager av 18:0 PC, dess fullt deuterade analog och 1,2-distearoyl-fofsfoserin (18:0 PS) på substrat av CaF2 och VSFS användes för att undersöka filmernas struktur och ordning såväl som hydratiseringsvattnet. CH- och vattenregionerna samt lågvågtalsområdet som innehåller fosfat-, ester-, karboxylsyra- och aminsignaler undersöktes för att få en fullständig bild av den molekylära strukturen. Data visar att alla deponerade monolager bildade en välordnad och stabil film och kolvätekedjornas medelorientering bestämdes med hjälp av signalen från den antisymmetriska metylvibrationen. / QC 20100924
263

The Investigation of Primary and Secondary Modifiers in the Extraction and Separation of Neutral and Ionic Pharmaceutical Compounds with Pure and Modified Carbon Dioxide

Eckard, Phyllis R. 21 April 1998 (has links)
A successful supercritical fluid extraction method includes removal of the analyte from the matrix into the bulk fluid as well as trapping or concentration of the analyte prior to analysis. In the first phase of this research, the trapping capacities of three solid-phase traps (glass beads, 50/50 (w/w) glass beads/octadecylsilica), 50/50 (w/w) Porapak Q®/glass beads) were determined as a function of trap composition for a mixture of components varying in polarity and volatility. The Porapak Q®/glass beads mixture was found to be the most successful solidphase investigated exhibiting the highest trapping capacity. The use of the Porapak Q®/glass beads as a solid-phase trap was investigated in later extraction studies in this dissertation. The extraction of highly polar, multifunctional analytes may not be completely successful with modified carbon dioxide, therefore, a secondary modifier (i.e. additive) may be added directly to the extraction fluid in hopes of improving the recoveries. In the second phase of this research, the effect of secondary modifiers in the subcritical fluid extraction of lovastatin from in-house prepared tablet powder mixtures and MEVACOR® tablets was investigated. The effect of in-line methanol-modifier percentage, additive type (acidic, basic, neutral) to the in-line methanol, and additive concentration on the extraction efficiency were examined. The extraction recoveries of lovastatin from MEVACOR® tablets were shown to be highly dependent on methanol concentration and additive type. Isopropylamine was shown to be the most successful additive investigated. An optimized and reproducible extraction method was developed. The extraction of ionic compounds with carbon dioxide may be difficult due to the high polarity of the compounds. In the third phase of this research, the addition of ion-pairing additives to the matrix in hopes of forming an ion-pair complex of reduced analyte polarity was investigated. Therefore, a screening study consisting of a fractional-factorial design was performed in order to identify the factors which contribute most to the recovery of an anionic species, triphenylphosphinetrisulfonate (TPPTS), from a spiked-sand surface employing supercritical fluid extraction with carbon dioxide. The experimental parameters investigated were: type of ion-pairing additive (i.e. tetralkylammonium hydrogen sulfates) and its concentration, carbon dioxide density, extraction temperature, static extraction time, CO₂ mass used, liquid CO₂ flow rate, and the volume of methanol spiked into the matrix prior to extraction. Of the eight factors investigated, four factors were identified as significantly affecting the recovery of the anionic species. They were: 1) ion-pairing reagent added to the spiked sand surface and its concentration; 2) static extraction time; and 3) volume of methanol present in the extraction vessel. The experimental parameters and settings identified as influential by the statistical approach were later shown in concert to yield 100% recovery of TPPTS from the spiked-sand. In the fourth phase, the extraction of a cationic species, pseudoephedrine hydrochloride, from spiked-sand and Suphedrine tablets, with pure and methanol-modified CO₂ was examined. Once the extraction was shown to feasible, several strategies were compared in terms of their effectiveness in enhancing the analyte's extractability. The first strategy involved the addition of ion-pairing additives. Several sodium salts of alkylsulfonic acids varying in lipophilicity and concentration were investigated. The addition of 1-heptanesulfonic acid, sodium salt, in methanol, in a 5:1 mole ratio of reagent to analyte was shown to be the most useful in recovering the drug from the spiked-sand. The second strategy considered the influence of acids and bases and other modifier compositions such as a methanol/water mixture with or without 1-heptanesulfonic acid, sodium salt, on the pseudoephedrine recovery. The recoveries obtained from the drug spiked-sand were shown to comparable in the presence of a methanol/water solution, a tetrabutylammonium hydroxide in methanol solution, and a methanol solution with 1-heptanesulfonic acid, sodium salt. Next the extraction of pseudoephedrine hydrochloride from Suphedrine tablets was performed with pure and modified CO₂. Similar to the sand-spike studies, the effect of the addition of the ion-pairing reagent and other in-cell modifiers were examined. Once again, the recoveries obtained when the matrix was in the presence of a methanol/water mixture and a methanol solution containing 1-heptanesulfonic acid, sodium salt were similar. Finally, the identity of the extracted analyte was determined via IR analyses, and it was shown that pseudoephedrine hydrochloride was indeed extractable from the tablets with in-line modified CO₂ in the absence of any in-cell modifier. In the last phase of this research, a supercritical fluid chromatographic separation with evaporative light scattering detection was developed for the separation of five phospholipids varying in polarity and ionic characteristics. Several parameters were investigated and shown to be influential in the separation. They were: 1) stationary phase composition, 2) addition of an acidic additive and its concentration, 3) mobile phase ramp rate, and 4) column outlet pressure. / Ph. D.
264

Conformational Changes Of Vinculin Tail Upon F-Actin And Phospholipid Binding Studied By EPR Spectroscopy

Abé, Christoph 29 June 2010 (has links)
The cytoskeletal protein vinculin plays a key role in the control of cell-cell or cell-matrix adhesions. It is involved in the assembly and disassembly of focal adhesions and affects their mechanical stability. While many facts highlight the importance and significance of vinculin for vital processes, its precise role in the regulation of cell adhesions is still only partially understood. Various EPR methods are used in this work in order to study the vinculin tail (Vt) domain in an aqueous buffer solution and its structural changes induced by F-actin and acidic phospholipids. EPR results in combination with a rotamer library approach (RLA), MD simulation and other computational methods allowed the construction of molecular models of Vt and dimeric Vt in the presence and absence of its binding partners. Furthermore, X-band orientation selective DEER measurements were applied on a Vt double mutant. It could be shown that the determination of the mutual orientation of protein bound spin labels is possible at X-band frequencies, if the orientation correlation of the spin label pair is strong. The method established here can be used to determine valuable information about proteins and nucleic acids, expanding the virtue of DEER spectroscopy as a tool for structure determination.
265

Characterizing the Link between Biological Membranes and Thermal Physiology in Antarctic Notothenioid Fishes

Biederman, Amanda M. 20 September 2019 (has links)
No description available.
266

The Effect of Acyl Chain Unsaturation on Phospholipid Bilayer

Soni, Smita Pravin 26 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Each biological cell is surrounded by a membrane that consists of many different kinds of lipids. The lipids are mainly composed of phospholipids, which form a fluid bilayer that serves as the platform for the function of membrane bound proteins regulating cellular activity. In the research described in this thesis we employed solid state 2H NMR, complemented by DSC (differential scanning calorimetry) and MD (molecular dynamics) simulations, to study the effect of PUFA (polyunsaturated fatty acids) and TFA (trans fatty acids) on molecular organization in protein-free model membranes of controlled composition. These two classes of unsaturated fatty acid incorporate into membrane lipids and have, respectively, a beneficial and harmful impact on health. The aim is to gain insight into the molecular origin of this behavior. DHA (docosahexaenoic acid), which with 6 "natural" cis double bonds is the most highly unsaturated PUFA found in fish oils, and EA (elaidic acid), which with only a single "unnatural" trans double bond is the simplest manmade TFA often found in commercially produced food, were the focus. 2H NMR spectra for [2H31]-N-palmitoylsphingomyelin ([2H31]16:0SM) in SM/16:0-22:6PE (1-palmitoyl-2-docosahexaenoylphosphatidylethanolamine)/cholesterol (1:1:1 mol) mixed membranes were recorded. This system served as our PUFA-containing model. The spectra are consistent with lateral separation into nano-sized (< 20 nm) domains that are SM-rich/cholesterol-rich (raft), characterized by higher chain order, and DHA-rich/cholesterol-poor (non-raft), characterized by lower chain order. The aversion cholesterol has for DHA, as opposed to the affinity cholesterol has for predominantly saturated SM, excludes the sterol from DHA-containing PE-rich domains and DHA from SM-rich/cholesterol-rich domains. It is the formation of highly disordered membrane domains that we hypothesize is responsible, in part, for the diverse health benefits associated with dietary consumption of DHA. 2H NMR spectra for 1-elaidoyl-2-[2H35]stearoylphosphatidylcholine (t18:1-[2H35]18:0PC) and 1-oleoyl-2-[2H35]stearoylphosphatidylcholine (c18:1-[2H35]18:0PC) were recorded to compare membranes with respect to a trans vs. cis ("natural") double bond. The spectra indicate that while a trans double bond produces a smaller deviation from linear conformation than a cis double bond, membrane order is decreased by a comparable amount because the energy barrier to rotation about the C-C single bonds either side of a <italic>trans</italic> or <italic>cis</italic> double bond is reduced. Although EA adopts a conformation somewhat resembling a saturated fatty acid, the TFA is almost as disordered as its <italic>cis</italic> counterpart oleic acid (OA). We speculate that EA could be mistaken for a saturated fatty acid and infiltrate lipid rafts to disrupt the high order therein that is necessary for the function of signaling proteins.
267

Protective Effects of Milk Phospholipids Against UV Photodamage in Human Skin Equivalents

Achay, Zyra 01 September 2011 (has links) (PDF)
The ultraviolet (UV) spectrum has been known to cause damage to skin in varying degrees. UVB radiation (290-320 nm) in particular, has been proven to be highly mutagenic and carcinogenic in many animal experiments compared to either UVA or UVC. The alarming rate of increase in skin cancer incidence has prompted many investigators to pursue other alternatives to sunscreens including changes in lifestyle habits and dietary consumption in order to boost our efforts in tackling this widespread disease. Previous studies employing confocal reflectance, MTT assay and histology suggest that milk phospholipids may possess protective properties against UVB-mediated damage but the molecular mechanism for this effect remains unclear. This study aims to evaluate changes in cell morphology, apoptosis and p21 expression in tissue engineered epidermis to increase our understanding of the mechanisms behind the potential protective effects of milk phospholipids against UV-induced photodamage. Human skin tissue equivalents were incubated in either 1% milk phospholipid solution or maintenance media then exposed to 120 mJ/cm2 dose of 300 nm UVB after 24 hours. The upregulation of p21 protein in response to DNA damage was measured with Western blot and immunofluorescence microscopy and markers for apoptosis and hyperplasia were examined 24 hours after irradiation. Results revealed that p21 levels and the amount of apoptotic markers such as fragmented DNA and nuclear condensation were significantly reduced in UV-exposed tissues pre-incubated with milk phospholipids compared to levels seen in both the positive control and UV-exposed skin tissue not incubated with milk phospholipids. This decrease in p21 expression may imply a reduction in DNA damage 24 hours after UV exposure or a decrease in acquired photodamage at the outset. Milk phospholipid incubation however, induced an increase in epidermal thickening with or without UV exposure, which may imply induction of a protective mechanism to enhance the barrier properties of skin.
268

Phospholipases and Reactive Oxygen Species Derived Lipid Biomarkers in Healthy and Diseased Humans and Animals – A Focus on Lysophosphatidylcholine

Engel, Kathrin M., Schiller, Jürgen, Galuska, Christina E., Fuchs, Beate 30 March 2023 (has links)
Phospholipids (PL) are converted into lipid biomarkers by the action of phospholipases and reactive oxygen species (ROS), which are activated or released under certain physiological and pathophysiological conditions. Therefore, the in vivo concentration of such lipid biomarkers [e.g., lysophospholipids (LPLs)] is altered in humans and animals under different conditions such as inflammation, stress, medication, and nutrition. LPLs are particularly interesting because they are known to possess proand anti-inflammatory properties and may be generated by two different pathways: either by the influence of phospholipase A2 or by different reactive oxygen species that are generated in significant amounts under inflammatory conditions. Both lead to the cleavage of unsaturated acyl residues. This review provides a short summary of the mechanisms by which lipid biomarkers are generated under in vitro and in vivo conditions. The focus will be on lysophosphatidylcholine (LPC) because usually, this is the LPL species which occurs in the highest concentration and is, thus, easily detectable by chromatographic and spectroscopic methods. Finally, the effects of lipid biomarkers as signaling molecules and their roles in different human and animal pathologies such as infertility, cancer, atherosclerosis, and aging will be shortly discussed.
269

Structural basis for the recognition of oxidized phospholipids in oxidized low density lipoproteins by class B scavenger receptors CD36 and SR-BI

Gao, Detao 30 January 2012 (has links)
No description available.
270

The Role of Subunit III in the Functional and Structural Regulation of Cytochrome <i>c</i> Oxidase in <i>Rhodobacter spheroids</i>

Alnajjar, Khadijeh Salim 28 August 2014 (has links)
No description available.

Page generated in 0.042 seconds