• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 268
  • 14
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 382
  • 382
  • 206
  • 201
  • 73
  • 71
  • 70
  • 68
  • 67
  • 61
  • 51
  • 48
  • 48
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Electrode surface modification using metallophthalocyanines and metal nanoparticles : electrocatalytic activity

Maringa, Audacity January 2015 (has links)
Metallophthalocyanines and metal nanoparticles were successfully synthesized and applied for the electrooxidation of amitrole, nitrite and hydrazine individually or when employed together. The synthesized materials were characterized using the following techniques: predominantly scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning electrochemical microscopy (SECM). Different electrode modification methods were used to modify the glassy carbon substrates. The methods include adsorption, electrodeposition, electropolymerization and click chemistry. Modifying the glassy carbon substrate with MPc (electropolymerization) followed by metal nanoparticles (electrodeposition) or vice versa, made a hybrid modified surface that had efficient electron transfer. This was confirmed by electrochemical impedance studies with voltammetry measurements having lower detection potentials for the analytes. This work also describes for the first time the micropatterning of the glassy carbon substrate using the SECM tip. The substrate was electrografted with 4-azidobenzenediazonium salt and then the click reaction was performed using ethynylferrocene facilitated by Cu⁺ produced at the SECM tip. The SECM imaging was then used to show the clicked spot.
122

Single and Two-Step Adsorption of Alkanethiolate and Sulfide Layers on InSb and InGaAs in the Liquid Phase

Contreras, Yissel, Contreras, Yissel January 2017 (has links)
III-V semiconductors have higher charge carrier mobilities than silicon and are used in photovoltaic devices, optical sensors, and emitters. The high injection velocities obtained with III-V channels allow for faster transistors with low power consumption. However, the large-scale implementation in electronic devices is currently limited by the defective interface formed between III-Vs and their oxides. Clean III-V surfaces are highly reactive in air and form amorphous oxides that lead to a high density of dangling bonds. Satisfying these dangling bonds has been associated with an improvement in electrical performance, directing the development of strategies that decrease the surface reactivity (chemical passivation) and the density of surface states that cause power dissipation (electrical passivation). Sulfur bonds easily to III-V surfaces and has been used to chemically and electrically passivate GaAs. In this work, we investigated liquid phase sulfur chemistries in the chemical passivation of clean InSb(100) and In0.53Ga0.47As(100) surfaces terminated by their group V elements. Our strategy consisted of maximizing the number of bonds between sulfur and antimony or arsenic. A long alkane chain thiol, 1-eicosanethiol (ET, 20 carbon atoms), was used to produce a hydrophobic surface and deposit a dense organic layer by taking advantage of the van der Waals interactions between thiol molecules. The first part of the study involved the optimization of the thiol deposition process on InSb. Self-assembled alkanethiol monolayers were formed by immersing clean InSb substrates in ET solutions in ethanol for 20 h. The layers prevented the formation of detectable oxides for 20 min based on the O Auger x-ray photoelectron spectroscopy (XPS) peak. The thiol layer was completely removed by heating the surface to 227 C in vacuum. In the second part of the study, a 20 h ET deposition was performed on In0.53Ga0.47As(100), and re-oxidation was prevented for up to 4 min based on the O 1s XPS peak. The alkanethiolate layer was removed by heating the samples to 350 C in vacuum. The sulfur coverage after 20 min and 20 h ET depositions was increased by performing a second immersion in (NH4)2S without modifying the thickness of the layer. The best process studied consisted of a 20 h immersion in ET solution followed by a short (NH4)2S step, preventing the formation of oxides for up to 9 min. This is due to the presence of available surface sites and weakly bonded molecules in the layer after a long 20 h ET process. The chemical passivation effect is not uniquely influenced by surface termination, roughness, or lattice constant, but is rather a result of a combination of these factors. Future work will involve the fabrication and electrical characterization of III-V devices modified with various chemical passivation strategies.
123

Surface studies of potentially corrosion resistant thin film coatings on chromium and type 316L stainless steel

Johnson, Stephanie Lee January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Peter M. Sherwood / This work is a detailed study of the interaction between two phosphorous-containing acids and the metals chromium and 316L stainless steel. The objective of this work is to investigate the formation of unique thin films on the two metals and to probe the surface chemistry of these films through the use of core level and valence band X-ray photoelectron spectroscopy (XPS). Chromium forms a wide array of oxides and can exist at several valencies. Valence band XPS is used in conjunction with band structure and multiple scattered wave X[alpha] calculations to distinguish which states are present in the resultant films. Both 99.99% chromium and 316L stainless steel foils were treated with orthophosphoric acid and 1-hydroxyethylidene-1,1-diphosphonic acid, otherwise known as etidronic acid. Two methods developed in the Sherwood research laboratory for forming oxide-free films on metal surfaces are utilized in this work. Core level XPS results did not provide sufficient information to draw conclusions regarding the products formed in the reactions. The valence band results showed clear evidence of multiple forms of phosphates forming on the metal surfaces as evidenced by the subtle differences in separation between the phosphorous 3p and 3s peaks as well as differences in separation between the O2s and phosphorous 3s peaks. The Valence Band XPS results were interpreted by X-[alpha] cluster and band structure calculations. Films formed on chromium foil from the orthophosphoric acid were found to be condensed phosphates that are stable in air. Etidronic acid formed very thin phosphate films on chromium with both treatment methods as well as on 316L stainless steel when the bench top method was applied. Treatment of etched 316L steel in the anaerobic cell generated an etidronate film. This sample was the only etidronate film formed, all other etidronate-based films were generated from disassembled portions of the etidronate ion to form phosphate films.
124

Designing next generation high energy density lithium-ion battery with manganese orthosilicate-capped alumina nanofilm

Ndipingwi, Miranda Mengwi January 2015 (has links)
>Magister Scientiae - MSc / In the wide search for advanced materials for next generation lithium-ion batteries, lithium manganese orthosilicate, Li₂MnSiO₄ is increasingly gaining attention as a potential cathode material by virtue of its ability to facilitate the extraction of two lithium ions per formula unit, resulting in a two-electron redox process involving Mn²⁺/Mn³⁺ and Mn³⁺/Mn⁴⁺ redox couples. This property confers on it, a higher theoretical specific capacity of 333 mAhg⁻¹ which is superior to the conventional layered LiCoO₂ at 274 mAhg⁻¹ and the commercially available olivine LiFePO₄ at 170 mAhg⁻¹. Its iron analogue, Li₂FeSiO₄ has only 166 mAhg⁻¹ capacity as the Fe⁴⁺ oxidation state is difficult to access. However, the capacity of Li₂MnSiO₄ is not fully exploited in practical galvanostatic charge-discharge tests due to the instability of the delithiated material which causes excessive polarization during cycling and its low intrinsic electronic conductivity. By reducing the particle size, the electrochemical performance of this material can be enhanced since it increases the surface contact between the electrode and electrolyte and further reduces the diffusion pathway of lithium ions. In this study, a versatile hydrothermal synthetic pathway was employed to produce nanoparticles of Li₂MnSiO₄, by carefully tuning the reaction temperature and the concentration of the metal precursors. The nanostructured cathode material was further coated with a thin film of aluminium oxide in order to modify its structural and electronic properties. The synthesized materials were characterized by microscopic (HRSEM and HRTEM), spectroscopic (FTIR, XRD, SS-NMR, XPS) and electrochemical techniques (CV, SWV and EIS). Microscopic techniques revealed spherical morphologies with particle sizes in the range of 21-90 nm. Elemental distribution maps obtained from HRSEM for the novel cathode material showed an even distribution of elements which will facilitate the removal/insertion of Li-ions and electrons out/into the cathode material. Spectroscopic results (FTIR) revealed the vibration of the Si-Mn-O linkage, ascertaining the complete insertion of Mn ions into the SiO₄⁴⁻ tetrahedra. XRD and ⁷Li MAS NMR studies confirmed a Pmn21 orthorhombic crystal pattern for the pristine Li₂MnSiO₄ and novel Li₂MnSiO₄/Al₂O₃ which is reported to provide the simplest migratory pathway for Li-ions due to the high symmetrical equivalence of all Li sites in the unit cell, thus leading to high electrochemical reversibility and an enhancement in the overall performance of the cathode materials. The divalent state of manganese present in Li₂Mn²⁺SiO₄ was confirmed by XPS surface analysis. Scan rate studies performed on the novel cathode material showed a quasi-reversible electron transfer process. The novel cathode material demonstrated superior electrochemical performance over the pristine material. Charge/discharge capacity values calculated from the cyclic voltammograms of the novel and pristine cathode materials showed a higher charge and discharge capacity of 209 mAh/g and 107 mAh/g for the novel cathode material compared to 159 mAh/g and 68 mAh/g for the pristine material. The diffusion coefficient was one order of magnitude higher for the novel cathode material (3.06 x10⁻⁶ cm2s⁻¹) than that of the pristine material (6.79 x 10⁻⁷ cm2s⁻¹), with a charge transfer resistance of 1389 Ω and time constant (τ) of 1414.4 s rad⁻¹ for the novel cathode material compared to 1549 Ω and 1584.4 s rad-1 for the pristine material. The higher electrochemical performance of the novel Li₂MnSiO₄/All₂O₃ cathode material over the pristine Li₂MnSiO₄ material can be attributed to the alumina nanoparticle surface coating which considerably reduced the structural instability intrinsic to the pristine Li₂MnSiO₄ cathode material and improved the charge transfer kinetics.
125

Generation, Characterization and Application of the 3rd and 4th Harmonics of a Ti:sapphire Femtosecond Laser

Wright, Peter January 2012 (has links)
Femtosecond time-resolved photoelectron spectroscopy (fsTRPES) experiments have been used to study the photoelectron energy spectra of simple molecules since the 1980’s. Analysis of these spectra provides information about the ultrafast internal conversion dynamics of the parent ions. However, ultraviolet pulses must be used for these pump-probe experiments in order to ionize the molecules. Since current solid state lasers, such as the Ti:sapphire laser, typically produce pulses centered at 800nm, it is necessary to generate UV pulses with nonlinear frequency mixing techniques. I therefore constructed an optical setup to generate the 3rd and 4th harmonics, at 266.7nm and 200nm, respectively, of a Ti:sapphire (Ti:sa) chirped-pulse amplified (CPA) laser system that produces 35fs pulses centered at 800nm. Thin Beta-Barium Borate (β-BaB2O4 or BBO) crystals were chosen to achieve a compromise between short pulse durations and reasonable conversion efficiencies, since ultrashort pulses are quite susceptible to broadening from group velocity dispersion (GVD). Output energies of around 11μJ and 230nJ were measured for the 266.7nm and 200nm pulses, respectively. The transform limits of the 3rd and 4th harmonic pulse lengths were calculated from their measured spectral widths. We found that the 266.7nm bandwidth was large enough to support sub-30fs pulses, and due to cutting at the lower-wavelength end of the 200nm spectrum, we calculated an upper limit of 38fs. The pulses were compressed with pairs of CaF2 prisms to compensate for dispersion introduced by transmissive optics. Two-photon absorption (TPA) intensity autocorrelations revealed fully compressed pulse lengths of 36 ± 2 fs and 42 ± 4 fs for the 3rd and 4th harmonics, respectively.
126

Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion

Garza, Michelle 05 1900 (has links)
The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
127

Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration.

Zhao, Xiaopeng 12 1900 (has links)
The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming Ta-O bonds with some precursor still attached. Subsequent bombardment with atomic hydrogen at 500K results in stoichiometric TaN formation, with a Ta(4f7/2) feature at binding energy 23.2 eV and N(1s) at 396.6 eV, leading to a TaN phase bonded to the substrate by Ta-O interactions. Subsequent depositions of the precursor on the reacted layer on SiO2 and OSG, followed by atomic hydrogen bombardment, result in increased TaN formation. These results indicate that TBTDET and atomic hydrogen may form the basis for a low temperature atomic layer deposition (ALD) process for the formation of ultraconformal TaNx or Ru/TaNx barriers. The interactions of sputter-deposited ruthenium with OSG at 300 K have been studied by XPS for Ru coverages from ~ 0.1 monolayer to several monolayers, using in-situ sample transfer between the deposition and analysis chambers. The results indicate Stranski-Krastanov (SK) type growth, with the completion of the first layer of Ru at an average thickness corresponding to 1 monolayer average coverage. Ru(0) is the only electronic state present. XPS core level spectra indicate weak chemical interactions between Ru and the substrate. A less pronounced tendency towards SK growth was observed for Ru deposition on parylene. Deposition of Ru on OSG followed by electroless deposition of Cu resulted in the formation of a shiny copper film that failed the Scotch® tape test. Results indicate failure mainly at the Ru/OSG interface.
128

X-ray photoelectron spectroscopy investigations of resistive switching in Te-based CBRAMs / Études par spectroscopie photoélectronique par rayons X de la commutation résistive dans les CBRAMs à base de Te

Kazar Mendes, Munique 04 October 2018 (has links)
Les mémoires à pont conducteur (CBRAM) sont une option actuellement étudiée pour la prochaine génération de mémoires non volatiles. Le stockage des données est basé sur la commutation de la résistivité entre les états de résistance élevée (HRS) et faible (LRS). Sous polarisation électrique, on suppose qu'un trajet conducteur est créé par la diffusion des ions de l'électrode active dans l'électrolyte solide. Récemment, une attention particulière a été portée sur les dispositifs contenant un élément semi-conducteur tel que le tellure, fonctionnant avec des courants réduits et présentant moins de défaillances de rétention. Dans ces « subquantum CBRAMs », le filament est censé contenir du tellure, ce qui donne une conductance de 1 atome (G₁atom) significativement réduite par rapport aux CBRAMs standard et permettant ainsi un fonctionnement à faible puissance. Dans cette thèse, nous utilisons la spectroscopie de photoélectrons par rayons X (XPS) pour étudier les réactions électrochimiques impliquées dans le mécanisme de commutation des CBRAMs à base de Al₂O ₃ avec des alliages ZrTe et TiTe comme électrode active. Deux méthodes sont utilisées: i) spectroscopie de photoélectrons par rayons X de haute énergie non destructive (HAXPES) pour étudier les interfaces critiques entre l'électrolyte (Al₂O ₃ ) et les électrodes supérieure et inférieure et ii) les faisceaux d'ions à agrégats gazeux (GCIB), une technique de pulvérisation qui conduit à une dégradation plus faible de la structure, avec un profilage en profondeur XPS pour évaluer les distributions des éléments en profondeur. Des mesures ToF-SIMS sont également effectuées pour obtenir des informations complémentaires sur la répartition en profondeur des éléments. Le but de cette thèse est de clarifier le mécanisme de changement de résistance et de comprendre les changements chimiques aux deux interfaces impliquées dans le processus de « forming » sous polarisation positive et négative ainsi que le mécanisme de « reset ». Pour cela, nous avons effectué une comparaison entre le dispositif vierge avec un état formé, i.e. l'échantillon après la première transition entre HRS et LRS et un état reset, i.e. l'échantillon après la première transition entre LRS et HRS.L'analyse du « forming » positif pour les dispositifs ZrTe / Al₂O ₃ a montré une libération de Te liée à l’oxydation de Zr due au piégeage de l'oxygène de l'Al₂O ₃ sous l’effet du champ électrique. D'autre part, pour les dispositifs TiTe / Al₂O ₃, la présence d'une couche importante d'oxyde de titane à l'interface avec l'électrolyte a provoqué une dégradation permanente de la cellule en polarisation positive. Pour le « forming » négatif, nos résultats montrent un mécanisme hybride, à savoir une combinaison de formation de lacunes d'oxygène dans l'oxyde provoquée par la migration de O2- entraîné par le champ électrique vers l'électrode inférieure et la libération de tellure pour former des filaments conducteurs. De plus, les résultats obtenus par profilométrie XPS et ToF-SIMS ont indiqué une possible diffusion de Te dans la couche d'Al₂O ₃. Lors du « reset », il y a une recombinaison partielle des ions oxygène avec les lacunes d'oxygène près de l'interface TiTe / AlAl₂O ₃ avec une perte de Te. Un mécanisme hybride a également été observé sur les dispositifs ZrTe / Al₂O ₃ pendant le « forming » négatif. En tenant compte du rôle important de la migration d'oxygène dans la formation / dissolution des filaments, nous discutons également des résultats obtenus par XPS avec polarisation électrique in- situ (sous ultravide) pour mieux comprendre le rôle de l'oxydation de surface et des interfaces dans la commutation résistive. / Conducting bridging resistive random accessmemories (CBRAMs) are one option currently investigated for the next generation of non volatile memories. Data storage is based on switching the resistivity between high (HRS) and low (LRS) resistance states. Under electrical bias,a conductive path is assumed to be created by ions diffusion from the active electrode into the solid electrolyte. Recently, special attention has been drawn to devices containing an elemental semiconductor such as tellurium, operating with reduced currents and less retention failures. In these subquantum CBRAM cells, the filament is thought to contain tellurium , yielding a 1-atomconductance (G₁atom) significantly reduced compared to standard CBRAMs and thus allowing low power operation. In this thesis, we use X-rayphotoelectron spectroscopy (XPS) to learn about electrochemical reactions involved in the switching mechanism of Al₂O₃ based CBRAMswith ZrTe and TiTe alloys as active electrode. Two methods are used: i) non-destructive Hard X-ray photoelectron spectroscopy (HAXPES) to investigate the critical interfaces between the electrolyte (Al₂O₃) and the top and bottom electrodes and ii) Gas Cluster Ion Beams (GCIB), a sputtering technique that leads to lower structure degradation, combined with XPS depth profiling to evaluate chemical depth distributions. To FSIMS measurements are also performed to get complementary in-depth chemical information.The aim of this thesis is to clarify the driving mechanism and understand the chemical changes at both interfaces involved in the forming process under positive and negative polarization as well as the mechanism of the reset operation. For that,we performed a comparison between as-grown state, i.e. the pristine device with a formed state,i.e. the sample after the first transition between HRS and LRS, and reset state, i.e. the sample after the first transition between LRS and HRS.Conducting bridging resistive random access memories (CBRAMs) are one option currently investigated for the next generation of non-volatile memories. Data storage is based on switching the resistivity between high (HRS) and low (LRS) resistance states. Under electrical bias,a conductive path is assumed to be created byions diffusion from the active electrode into the solid electrolyte. Recently, special attention has been drawn to devices containing an elemental semiconductor such as tellurium, operating with reduced currents and less retention failures. In these subquantum CBRAM cells, the filament is thought to contain tellurium , yielding a 1-atom conductance (G₁atom) significantly reduced compared to standard CBRAMs and thus allowing low power operation. In this thesis, we use X-ray photoelectron spectroscopy (XPS) to learn about electrochemical reactions involved in the switching mechanism of Al₂O₃ based CBRAMs with ZrTe and TiTe alloys as active electrode. Twomethods are used: i) non-destructive Hard X-rayphotoelectron spectroscopy (HAXPES) toinvestigate the critical interfaces between the electrolyte (Al₂O₃) and the top and bottom electrodes and ii) Gas Cluster Ion Beams (GCIB), a sputtering technique that leads to lower structure degradation, combined with XPS depth profiling to evaluate chemical depth distributions. To FSIMS measurements are also performed to get complementary in-depth chemical information.The aim of this thesis is to clarify the driving mechanism and understand the chemical changes at both interfaces involved in the forming process under positive and negative polarization as well as the mechanism of the reset operation. For that,we performed a comparison between as-grown state, i.e. the pristine device with a formed state,i.e. the sample after the first transition between HRS and LRS, and reset state, i.e. the sample after the first transition between LRS and HRS.
129

Fyzikálně-chemické vlastnosti epitaxních vrstev CeO2/Cu(110) / Physically chemical properties of epitaxial films CeO2/Cu(110)

Aulická, Marie January 2012 (has links)
In this work ways of preparation of thin epitaxial cerium oxide film on Cu(110) surface were studied. X-ray photoelectron spectroscopy (XPS), X-ray photoelectron difraction (XPD), low energy electron difraction (LEED), ion scattering spectroscopy (ISS) and scanning tunneling microscopy (STM) were used for the characterization of prepared systems. The island structure of CeO2 was prepared by the method of reactive evaporation in oxygen atmosphere. The influence of temperature on the electronic structure and morphology was studied. At the temperature above 550 ˚C partial reduction to Ce2O3 and reordering of the islands to the CeO2(331) structure was observed. The ceria promoted oxidation of copper surface was approved, since the clean c(6x2) reconstruction of the surface was observed at the oxygen exposure 1,5 order of magnitude lower then on Cu(110) alone. The other model system was prepared by cerium evaporation to the oxygen precovered Cu(110) surface. The mix of (2x1) and c(6x2) surface reconstruction was formed by oxygen exposition at 300 ˚C. Cerium was deposited on this surface, also at 300 ˚C. During the following heating to 500 ˚C the formation of epitaxial film Ce2O3(0001) was observed, accompanied by the formation of large hundreds nm long smooth band structures in the [11̄0] direction.
130

Angle-Resolved Photoelectron Spectroscopy Studies of the Many-Body Effects in the Electronic Structure of High-Tc Cuprates

Inosov, Dmytro 27 June 2008 (has links)
In spite of the failures to find an ultimate theory of unconventional superconductivity, after many years of research the scientific community possesses a considerable store of theoretical knowledge about the problem. Over time, the focus is gradually shifted from finding a theoretical description of an experimentally observed phenomenon to distinguishing between multiple models that offer comparably reasonable descriptions. From the point of view of an experimentalist, this means that any qualitative under-standing of an experimental observation would no longer suffice. Instead, the empha-sis in the experimental research should be shifted to accurate quantification of obser-vations, which becomes possible only if the results available from all the available ex-perimental methods are connected together by the theoretical glue. Among the meth-ods that are to be unified, ARPES plays a central role. The reason for this is that it gives access to the single-particle excitation spectrum of the material as a function of both momentum and energy with very high resolution. Other experimental techniques, such as inelastic neutron scattering (INS), Raman spectroscopy, or the newly estab-lished Fourier-transform scanning tunneling spectroscopy (FT-STS) probe more com-plicated two-particle spectra of the electrons and up to now can not achieve the mo-mentum resolution comparable with that of ARPES. Such reasoning serves as the mo-tivation for the present work, in which some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates and relating the ARPES technique to other experimental methods. First, the electronic properties of BSCCO are considered — the superconducting cuprate most studied by surface-sensitive methods. The recent progress in un-derstanding the electronic structure of this material is reported, focusing mainly on the many-body effects (renormalization) and their manifestation in the ARPES spectra. The main result of this part of the work is a model of the Green’s function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed “waterfalls”, is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. Finally, the work describes the relation of ARPES with other experimental methods, with the special focus on the INS spectroscopy. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). The results are compared with the experimental INS data on BSCCO and YBCO. The calculation is based on numerical models for the normal and anomalous Green’s functions fitted to the experimental single-particle spectra. The renormalization is taken into account both in the single-particle Green’s function by means of the self-energy, and in the two-particle correlation function by RPA. Additionally, two other applications of the same approach are briefly sketched: the relation of ARPES to FT-STS, and the nesting properties of Fermi surfaces in two-dimensional charge density wave systems.

Page generated in 0.0987 seconds