• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid Integration of Er-doped Materials and CNTs on Silicon for Light Emission and Amplification / Intégration hybride sur silicium de matériaux dopés Erbium ou riches en nanotubes de carbone semiconducteurs pour l'émission et l'amplification de la lumière sur puce

Zhang, Weiwei 13 January 2017 (has links)
Ce travail de thèse est une contribution à la thématique de l’intégration de matériaux actifs en photonique silicium pour la réalisation de fonctions actives. L’accent a été mis sur des matériaux préparés en couches minces pouvant être dépose sur substrats silicium pour la réalisation de sources de lumière intégrées. L’approche classique en photonique silicium dans le fenêtre télécom (1.55μm) repose sur l’utilisation de guides strip fabriqués à partir de substrats silicium sur isolant, SOI). Le choix qui été fait dans ce travail repose en revanche sur l’utilisation de guides à cœur creux (‘slot waveguides’) en raison de l’excellent recouvrement qu’ils permettent entre leur mode optique fondamental quasi-TE et les matériaux de couverture utilisés. Les contributions de cette thèse ont porté à la fois sur les étapes de conception/simulation et sur celles liées à l’optimisation des étapes de fabrication en salle blanche. Des guides slot Si/SiO2 et SiN/SiO2 et des résonateurs en anneaux basés sur ces guides ont conduit à : - des pertes de propagation typiquement comprises entre 1dB/cm et 7dB/cm. - des résonateurs à facteur de qualité de quelques dizaines de milliers pour des structures couvertes par des liquides d’indice. Dans un deuxième temps, les travaux poursuivis ont visé à l’intégration de matériaux actifs dopés à l’Erbium dans les guides à fentes présentés en première partie en vue de la démonstration de gain optique sur puce dans la fenêtre télécom (1.55μm). Une première collaboration nous a amené à la démonstration de gain optique sur puce à partir d’une géométrie de guide en arête inversée fabriqué en polymère actif. Un gain interne de l’ordre de 25dB sur puce a été obtenu par cette approche pour une puissance de pompe optique de l’ordre de 70 à 80mW. Une seconde collaboration s’est focalisée, quant à elle, sur l’intégration d’oxyde Al2O3 dans des guides à fentes SiN fabriqués à Orsay. Les problématiques d’intégration des matériaux ont été étudiées dans un premier temps. Le résultat le plus marquant a été obtenu pour un guide de longueur 400μm, pour lequel un gain relatif de 1.5dB a été obtenu pour une puissance de pompe de l’ordre de 50mW à longueur d'onde 1480nm. De manière complémentaire, nous avons exploré une seconde voie destinée à la démonstration de structures émettrices/amplificatrices sur puce, exploitant l’utilisation de nanotubes de carbone semi-conducteurs. Notre équipe du C2N, en forte collaboration avec le CEA-Saclay, a développé une méthode de préparation de solutions riches en nanotubes de carbone semi-conducteurs (séparation par centrifugation). Au final, les couches minces qui en ont résulté ont constitué un milieu actif qui a pu être intégré de manière planaire sur des échantillons de silicium pour le développement de fonctions optiques intégrées par intégration hybride. Par cette approche, nous avons démontré : - qu’un pompage vertical des structures photoniques pouvait donner lieu à une extraction de photoluminescence (PL) en sortie guidée par la tranche, dans des guides à fentes, - qu’un renforcement significatif de la PL était obtenu par effet de recyclage des photons dans des résonateurs diélectriques à base de guides à fente. Pour conclure, l’ensemble des travaux présentés dans cette thèse apporte une contribution au développement d’une photonique hybride sur silicium exploitant les propriétés de la plateforme de guidage optique sur SOI et celles de matériaux actifs (polymères dopés à l’Erbium ou aux nanotubes de carbone). / This thesis is a contribution to the hybrid integration of active materials including Erbium-doped and carbon nanotubes rich layers on silicon for on-chip light emission.In a first step, we designed, fabricated, and characterized within the silicon-on-insulator and silicon nitride platforms a range of photonic structures including strip/slot waveguides, micro disks, strip/slot ring resonators, and micro cavities aiming at preparing a set of passive device building blocks needed for hybrid integration on Si. Silicon slot waveguides and slot ring add-drop resonators filled with index liquids with linear propagation losses 2-7 dB/cm and Q-factors up to 30,000, have been demonstrated around wavelength=1.55µm. Propagation loss of silicon nitride slot waveguides were minimized down to ~4dB/cm for compact spiral structures (2cm long, within ~500µm×500µm area). Air-band mode Nano beam cavities were also investigated, leading to Nano cavities with mode volumes V ~0.03(wavelength/n)^3 and Q-factors ~70,000 when filled with soft materials.In a second step, hybrid integration of Erbium doped materials and semiconducting single-wall carbon nanotubes (SWCNTs) was investigated for light emission under optical pumping.Integration of Erbium-doped materials was studied within the framework of two collaborations: Prof. Daming Zhang’s team, in State Key Laboratory on Integrated Optoelectronics, Jilin University, China, and Prof. Zhipei Sun, in Department of Micro- and Nanosciences, Aalto University, Finland. Erbium doped layers coming from Jilin were composed of Er3+ and Yb3+ co-doped core {shell} nanoparticles which were copolymerized with methyl methacrylate (MMA) to synthesize nanocomposite (PMMA-NPs: Er3+/Yb3+). We conducted the experimental characterization that led to the demonstration of an internal net gain up to 10-17dB/cm at wavelength=1.53µm in Erbium doped polymer rib waveguides fabricated in Jilin. The second Erbium doped material available during this thesis was based on Er2O3/Al2O3 atomic layers, grown in Aalto University. This collaboration was devoted to integrate high Erbium ion concentration (10E21/cm3) in oxide cladding layers on top of silicon nitride slot waveguides, which were fabricated in our group for the demonstration of on-chip optical net gain. The carried out experiments have conducted to the demonstration of 1.5-22.8dB/cm gain for sub millimeter length waveguides.In another direction, hybrid integration of SWCNTs emitting at wavelengths around 1.3 µm on ring resonators and Nano beam cavities has been investigated. First, we studied the coupling of SWCNTs photoluminescence (PL) in silicon micro-ring resonators and compared it with the PL intensity coupled into the bus waveguide . It has been shown that the pump beam polarization controls the light coupling into the straight bus waveguide. We demonstrated an enhancement of the PL intensity of 20dB at resonance. We also explored CNT hybrid integration with ultra-small mode volume Nano beam optical cavities, and hence with larger Purcell-like Q/V factors in comparison with the one obtained in micro-ring resonators. The results revealed that the PL resonance enhancement due to Nano beam cavity field confinement exhibited a nonlinear growth as a function of the pump power. It was also shown that the resonance of the PL peak intensity grows faster with the pump power than the PL background, which is accompanied by a line width narrowing of the resonance PL peak. This result is the first step to achieve an integrated laser based on carbon nanotubes.
2

Design and characterization of Silicon Photonic structures for third order nonlinear effects / Conception et caractérisation de structures photoniques sur silicium pour les effets non linéaires du troisième ordre

Serna Otálvaro, Samuel Felipe 28 November 2016 (has links)
Le présent travail a été consacré à l'étude des non linéarités de troisième ordre dans des structures intégrées à base de silicium exploitant des configurations de cavités à miroir de Bragg (nanobeam) et guides à cristaux photoniques à modes lents. Tout d'abord, nous avons développé une méthode non destructive à faisceau unique pour caractériser les effets de troisième ordre instantanés, c’est-à-dire la quantification de la susceptibilité complexe effective dans les guides d'ondes. La méthode a été dénommée "Top-hat D-Scan bi-directionnelle" et constitue un analogue temporel de la méthode Top-hat Z-Scan développée précédemment. Nous avons établi un modèle analytique et numérique et nous rendons compte de la première mesure d'un guide d'ondes en silicium utilisant une impulsion mis en forme dans un étireur et complétée par une procédure d’injection bi-directionnelle. L’ensemble instrumental développé constitue une expérience de métrologie des effets non-linéaires dans des guides d’ondes silicium au meilleur niveau de l’état de l’art. La méthode proposée a été validée dans des guides SiGe, chalcogénures et nitrure du silicium. Forts de cet outil métrologique, nos travaux d’exploration des interactions non linéaires lumière-matière ont été consacrés à deux grandes familles de nanostructures photoniques : des microcavités optiques et guides d'ondes en régime de lumière lente. Dans la première des deux situations, les variations d'indice provoquées par les non linéarités sont responsables d’un décalage des fréquences de résonance excluant sa coïncidence avec la fréquence du signal d'excitation et diminuant ainsi l'efficacité de l'injection optique de manière drastique. Afin de maintenir le bénéfice de localisation de la lumière tout au long de l'excitation pulsée, nous avons expérimentalement et numériquement étudié le comportement d'une cavité en silicium conçue, fabriquée, et enfin excitée par une impulsion présentant une puissance crête élevée. En contrôlant temporellement la phase des composantes spectrales injectée, la relation de phase spectrale compensant la dérive de fréquence non linéaire de la résonance de la cavité, nous avons effectué la première démonstration expérimentale de l'excitation cohérente d'une micro-cavité silicium non linéaire. Enfin, nous avons consacré des efforts importants pour concevoir, fabriquer et caractériser des guides d'ondes à cristaux photoniques (SPhCW) en silicium à fente, matrice d’une intégration hybride de matériaux optiques non-linéaires sur silicium. Les résultats rapportés fournissent la première preuve expérimentale d’un contrôle précis des propriétés de dispersion de guides à cristaux photoniques à fente propres à être remplis par des matériaux souples comme des polymères ou des couches minces dopées. La dispersion de groupe des modes lents guidés est contrôlable en signe et en amplitude et correspond à des bandes passantes optiques exploitables (~10nm). Ces résultats démontrent l’intérêt direct pour le traitement des données tout-optique sur puce des guides à modes lents à cœur creux utilisant des effets optiques non linéaires d’ordre trois pour le traitement tout-optique des données sur puce. / All-optical signal processing implemented in silicon photonics is considered as a promising route to solve several bottlenecks for the realization of future dense and mixed integrated electronic and photonic chips including ultrahigh data bit rate issues and power consumption constraints. In the context of the planar silicon photonics technology, a dramatic reduction of the needed power to reach optical nonlinear effects is obtained due to the sub-micrometer size of silicon wires (~450nmX260nm) in the telecommunication wavelength window, although silicon does not exhibit second-order response (χ^((2))) due to the centrosymmetry of its lattice. Moreover, third-order effects (χ^((3))) are partially spoiled in this material due to the strength of the two-photon-absorption (TPA) effect, which in turn generates free-carriers inducing additional absorption and refractive index changes. One way to overcome this limitation is the hybrid integration on silicon of low index soft materials with luminescence or nonlinear optical properties lacking to silicon. In this context, the present work is devoted to the study of third order nonlinearities in silicon-based integrated structures exploiting enhanced electromagnetic field effects (e.g. in Si resonators and slow light waveguides). First, we have developed a dedicated single beam non-destructive method to characterize the instantaneous third order effects though the quantification of complex effective waveguide susceptibility. The method is named “Bi-directional top-hat D-Scan” and consists on a temporal analogous of the top-hat Z-Scan. We have established an analytical and numerical model and we report the first measurement of a silicon waveguide by using a pulse shaping set-up and a bi-directional procedure. The originality of our methods stands in the capability to measure in two steps : the 3rd order nonlinear Figure-Of-Merit (FOM) independently of the injection losses, and the effective nonlinear waveguide parameters (Kerr and TPA) taking into account measured coupling losses at each facet. Furthermore, we apply the method to other integrated novel materials including Ge-rich GeSi alloys, carbon nanotube doped thin films, and chalcogenide waveguides. Additionally, two further enhancements of light-matter nonlinear interactions have been explored within this work: optical microcavities and slow light waveguides. In the first picture, index variations caused by non-linearities shift the resonance frequencies precluding the coincidence with the excitation signal frequency, thereby decreasing the injection efficiency. In order to maintain the benefit of light localization throughout the pulsed excitation, we have experimentally and numerically studied the behavior of a designed and fabricated silicon nanobeam cavity excited by a high power tailored chirped pulse whose spectral phase relation compensates for the nonlinear frequency drift of the cavity resonance. We report a numerical study of this first experimental demonstration of the coherent excitation of a nonlinear micro-cavity, leading to an enhanced intra-cavity nonlinear interaction. Finally, we have dedicated efforts to engineer, fabricate and characterize silicon slot photonic crystal waveguides (SPhCW) in order to compensate their strong dispersion present in the slow light regime while taking benefit from large group index light propagation. We showed that their frequency dispersion properties can be engineered from anomalous to normal dispersion, along with zero group velocity dispersion (ZGVD) crossing points exhibiting a Normalized Delay Bandwidth Product (NDBP) as high as 0.156. The reported results provide the first experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies.
3

Dispositifs photoniques hybrides sur Silicium comportant des guides nano-structurés : conception, fabrication et caractérisation / Hybrid photonic devices on silicon including nanostructured waveguides : conception, fabrication and characterization

Itawi, Ahmad 01 December 2014 (has links)
Le contexte de cette thèse couvre les dispositifs photoniques hybrides III-V sur silicium. L’étude porte sur l’intégration par collage de matériau à base d'InP sur le silicium, puis la conception d’un guide optique comportant une nanostructuration qui permettra la sélection en longueur d’onde dans un laser DFB hybride. Enfin, on étudie les étapes technologiques de fabrication d’un laser hybride injecté électriquement fonctionnant dans le domaine spectral 1.55µm, et on caractérise les dispositifs. Pour associer les matériaux III-V sur Si, nous avons développé le collage sans couche intermédiaire que l’on nomme collage hétéroépitaxial ou oxide-free. Ce collage est reporté dans la littérature comme présentant une meilleure qualité électrique. Nous avons établi les conditions de préparation permettant d’obtenir des surfaces parfaitement désoxydées, et les conditions de recuit conduisant à une interface hybride sans oxyde et sans dislocation. Mais ce recuit est réalisé à température assez élevée (~450-500°C). Nous avons alors développé le collage avec une fine couche intermédiaire d’oxyde réalisé à plus faible température -300°C- qui présente l'avantage d'être compatible avec la technologie CMOS. Nous avons étudié différentes approches pour élaborer et activer une couche d’oxyde très fine (~3nm), de façon à obtenir une surface collée sans zones localement non collées. Le collage est dans les deux cas réalisé sous vide dans un équipement de type Bonder Suss SB6e. La qualité structurale de l’interface a été observée par STEM et la qualité mécanique du joint de collage a été caractérisée par indentation. Une méthode originale de mesure quantitative et locale de l’énergie du joint de collage a été développée. La qualité optique des couches collées a été étudiée par la mesure de la photoluminescence de puits quantiques placés proches du joint d’interface. En conséquence du collage sans couche intermédiaire ou avec une couche très fine, le design du mode optique est de type double-cœur, qui ne nécessite pas de taper. Le guide optique Si est de type shallow ridge, le confinement latéral étant assuré par un matériau nanostructuré à une période sub-longueur d’onde. Ce matériau fonctionne comme un matériau effectif uniaxe pour lequel on a calculé les indices optiques ordinaire et extraordinaire selon la géométrie de la nanostructuration. On peut rajouter sur cette nanostructuration une super-périodicité qui conduit à un fonctionnement sélectif en longueur d’onde. Le comportement modal du guide est simulé à l'aide du logiciel COMSOL Multiphysics, le comportement spectral est simulé par FTDT 3D. Nous avons validé la pertinence de ce design en mesurant la transmission de guides hybrides. Ce design sera inclus dans un laser et permettra d’obtenir une émission monofréquence de type DFB. Nous avons développé les étapes technologiques nécessaires à la fabrication d’un laser hybride à base d'InP sur Silicium fonctionnant en injection électrique. Nous avons mis en oeuvre de nombreuses techniques, et développé plusieurs procédés spécifiques, en particulier, des procédés de gravure sèche de type Inductive Coupled Plasma Reactive Ion Etching ICP-RIE pour la gravure de la nanostructuration dans le silicium, et pour la gravure du mésa du laser. La présence des 2 matériaux III-V et Si dans le dispositif hybride rend ces étapes complexes. Les premiers résultats peuvent être améliorés en optimisant la technologie des contacts. Un design permettant de s’affranchir de la pénalité thermique présenté par tous les dispositifs ayant les 2 contacts électriques du coté du matériau III-V a été proposé, exploitant le passage du courant à l’interface hybride III-V / Si, ce qui est possible dans le cas du collage oxide-free. Cette approche ouvre des perspectives d’intégration au-delà de la photonique. / This work contributes to the general context of III-V materials on Silicon hybrid devices for optical integrated functions, mainly emission/amplification at 1.55µm. Devices are considered for operation under electrical injection, reaching performances relevant for data transfer application. The main three contributions of this work concern: (i) bonding InP-based materials on Si, (ii) nanostructuration of the Si guiding layer for spatial and spectral control of the guided mode and (iii) technology of an hybrid electrically injected laser, with a special attention to the thermal budget. Bonding has been investigated following two approaches. The first one we call heterohepitaxial or oxide-free bonding, is performed without any intermediate layer at a temperature ~450°C. This approach has the great advantage allowing electrical transport across the interface, as reported in the literature. We have developed oxide-free surface preparation for both materials, mainly InP-based layers, and established bonding parameter processing. An in-depth STEM and RX structural characterization has demonstrated an oxide-free reconstructed interface without any dislocation except on one or two atomic layers which accommodate the large lattice mismatch (8.1%) between InP and Si. Photoluminescence of quantum wells intentionally grown close to the interface has shown no degradation. We have also developed an oxide-based bonding process operated at 300°C in order to be compatible with CMOS processing. The original ozone activation of the very thin (~5nm) oxide layer we have proposed demonstrates a bonding surface without any unbonded area due to degassing under annealing. We have developed an original method based on nanoindentation characterization in order to obtain a quantitative and local value of the surface bonding energy. Related to the absence or to the very thin intermediate layer between the two materials, our modal design is based on a double core structure, where most of the optical mode is confined in the Si guiding layer, and no taper is required. The Si waveguide on top of the SOI stack is a shallow ridge. A nanostructured material on both sides of the waveguide core ensures the lateral confinement, the nanostructuration geometry being at a sub-wavelength period in order to operate this material well below its photonic gap. It behaves as an uniaxial material with ordinary and extraordinary indices calculated according to the structuration geometry. Such a structuration allows modal and spectral control of the guided mode. 3D modal and spectral simulation have been performed. We have demonstrated, on a double-period structuration, a wavelength selective operation of hybrid optical waveguides. Such a double-period geometry could be included in a laser design for DFB operation. This nanostructuration has larger potential application such as coupled waveguides arrays or selective resonators. We have developed all the technological processing steps for an electrically injected hybrid laser fabrication. Main developments concern dry etching, performed with the Inductive Coupled Plasma Reactive Ion Etching ICP-RIE technique of both the nanostructuration of the Silicon material, and the mesa of the hybrid laser. Efficient electrical contacts fabrication is also a complex step. First lasers operating performances could be improved. We have investigated a specific design in order to overcome the thermal penalty encountered by all the hybrid devices. This penalty is due to the thick buried oxide layer of the SOI stack that prevents heating related to the current flow to be dissipated. Taking advantage of the electrical transport we have shown at the oxide-free interface, we propose a design where the n-contact is defined on the guiding Si layer, suppressing thermal heating under electrical operation. Such an approach is very promising for densely packed hybrid devices integrated with associated electronic driving elements on Si.

Page generated in 0.0619 seconds