• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 26
  • 11
  • 10
  • 7
  • 2
  • 2
  • 2
  • Tagged with
  • 145
  • 95
  • 34
  • 33
  • 17
  • 17
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Functional studies on the Light-harvesting-Like (LiL) Proteins in Cyanobacteria and Cryptophytes

Tibiletti, Tania January 2012 (has links)
The light-harvesting like (LiL) proteins are a widely spread group of proteins within photosynthetic organisms. They are membrane proteins composed of one to four transmembrane helices and – in homology to the light-harvesting complexes of algae and higher plants – at least one of these transmembrane helices contains the chlorophyll a/b-binding (CAB) domain. Opposite to the light-harvesting antenna complexes, LiL proteins are stress induced and they have been shown to be involved in protection of the photosynthetic apparatus. The work presented in this thesis is focused on understanding the function of one-helical LiL proteins of the cryptophyte algae Guillardia theta and the cyanobacterium Synechocystis sp. PCC 6803. G. theta contains two genes encoding LiL proteins, one is localized in the plastid (hlipP), the other in the nucleomorph (HlipNm). Both genes are expressed in normal growth condition, but they are not induced by high light. Immunostaining indicated that HlipNm is translated, but not light-induced. These proteins therefore seem not to be involved in photoprotective mechanisms of G. theta. In the cyanobacterium Synechocystis sp. PCC 6803 four one-helical LiL proteins were identified, they are called Small CAB-like Proteins (SCPs); a fifth LiL (ScpA) is fused with the ferrochelatase (FC), an enzyme involved in the heme synthesis. Our analysis revealed that SCPs are involved in the de novo assembly/repair cycle of Photosystem II, stabilizing the chlorophyll pigments at their protein scaffold. The in vitro characterization of the recombinant FC showed that ScpA is involved in the product-release of the catalytic domain of the enzyme, thereby regulating substrate availability for chlorophyll- or heme- biosynthesis. Finally, using a transcriptomic and metabolomic approaches, I was able to show that deletion of all SCP genes has profound impact on the cell organization and metabolism. In SCP-depleted cells, production of reactive oxygen species (ROS) is increased, while the amount of Photosystem II per cell volume is decreased, causing a macronutrient-deficient phenotype. Therefore, SCPs are important for stress protection and help to maintain a metabolic equilibrium within the cell.
82

Ruthenium-Manganese Complexes as Model Systems for Artificial Photosynthesis

Tran, Anh January 2001 (has links)
No description available.
83

Challenges in Enzyme Catalysis - Photosystem II and Orotidine Decarboxylase : A Density Functional Theory Treatment

Lundberg, Marcus January 2005 (has links)
Possibly the most fascinating biochemical mechanism remaining to be solved is the formation of oxygen from water in photosystem II. This is a critical part of the photosynthetic reaction that makes solar energy accessible to living organisms. The present thesis uses quantum chemistry, more specifically the density functional B3LYP, to investigate a mechanism where an oxyl radical bound to manganese is the active species in O-O bond formation. Benchmark calculations on manganese systems confirm that B3LYP can be expected to give accurate results. The effect of the self-interaction error is shown to be limited. Studies of synthetic manganese complexes support the idea of a radical mechanism. A manganese complex with an oxyl radical is active in oxygen formation while manganese-oxo complexes remain inactive. Formation of the O-O bond requires a spin transition but there should be no effect on the rate. Spin transitions are also required in many short-range electron-transfer reactions. Investigations of the superproficient enzyme orotidine decarboxylase support a mechanism that involves an invariant network of charged amino acids, acting together with at least two mobile water molecules.
84

Functions of REP27 and the low molecular weight proteins PsbX and PsbW in repair and assembly of photosystem II

Garcia Cerdan, Jose Gines January 2009 (has links)
Oxygenic photosynthesis is the major producer of both oxygen and organic compounds on earth and takes place in plants, green algae and cyanobacteria. The thylakoid membranes are the site of the photosynthetic light reactions that involve the concerted action of four major protein complexes known as photosystem II (PSII), cytochrome b6f complex, ATP synthase and photosystem I (PSI). The function of PSII is of particular interest as it performs the light–driven water splitting reaction driving the photosynthetic electron transport. My thesis addressed different aspects of PSII assembly and the functions of its low molecular weight PSII subunits PsbX and PsbW. Photosynthesis in green algae and higher plants is controlled by the nucleus. Many proteins of nuclear origin participate in the regulation of the efficient assembly of the photosynthetic protein complexes. In this investigation we have identified one of these nuclear encoded auxiliary proteins of photosystem II, REP27, which participates in the assembly of the D1 reaction center protein and repair of photodamaged PSII in the green algae Chlamydomonas reinhardtii. Interestingly, PSII is specially enriched in Low Molecular Weight (LMW) subunits that have masses less than 10kDa. These proteins account for more than the half of the PSII subunits. Several questions remains poorly understood regarding the LMW: Which is their evolutionary origin? What function do they perform in the protein complex? Where are they located in the protein structure? In this investigation the functions of two of these LMW subunits (PsbX and PsbW) have been studied using antisense inhibition and T-DNA knockout mutant plants in Arabidopsis thaliana. Deficiency of the PsbX protein leads to impaired accumulation and functionality of PSII. Characterization of PsbW knock-out plants show that PsbW participates in stabilization of the macro-organization of PSII and the peripheral antenna (Light Harvesting Complex, LHCII) in the grana stacks of the chloroplast, also known as PSII-LHCII supercomplexes.
85

The Heterocysts of Nostoc punctiforme : From Proteomics to Energy Transfer

Cardona, Tanai January 2009 (has links)
The aim of this thesis is to provide a thorough characterization of the photosynthetic machinery from the heterocysts of Nostoc punctiforme strain ATCC 29133. In this thesis I describe the protocols I have optimized for the isolation of thylakoids from vegetative cells, the purification of heterocysts and the isolation of thylakoids from the purified heterocysts. The composition of the thylakoid membranes was studied by two dimensional electrophoresis and mass-spectrometry. Further insight into the functionality of the photosynthetic complexes was obtained by EPR, electron transport measurements through Photosystem II (PSII), and fluorescence spectroscopy. The proteome of the heterocysts thylakoids compared to that of the vegetative cell was found to be dominated by Photosystem I (PSI) and ATP-synthase complexes, both essential for keeping high nitrogenase activities. Surprisingly, we found a significant amount of assembled monomeric PSII complexes in the heterocysts thylakoid membranes. We measured in vitro light-driven electron transfer from PSII in heterocysts using an artificial electron donor, suggesting that under certain circumstances heterocysts might activate PSII. Parallel to my main research I also worked in a collaboration to elucidate the total proteome of Nostoc sp. strain 7120 and Nostoc punctiforme using quantitative shotgun proteomics. Several hundred proteins were quantified for both species. It was possible to trace the detailed changes that occurred in the energy and nitrogen metabolism of a heterocyst after differentiation. Moreover, the presence of PSII proteins identified in our membrane proteome was also confirmed and extended. Lastly, I studied how the heterocysts are capable of responding to variations in light quality as compared to vegetative cells. Using 77 K fluorescence spectroscopy on heterocysts and vegetative cells previously illuminated with light at specific wavelengths, I was able to demonstrate that heterocysts still possess a possibly modified but functional antenna system, capable of harvesting light and transferring energy preferentially to PSI. The characterization of the membrane and total proteome permitted to draw a more comprehensive and integrated picture of the interplay between the distinct metabolic processes that are carried out in each cell type at the same time; from oxygenic photosynthesis and carbon fixation in the vegetative cells to the anoxygenic cyclic photophosphorylation essential to power nitrogen assimilation in the heterocysts.
86

The effect of nitrogen starvation on PSI and PSII activity in pea (Pisum sativum)

Ek, Louise January 2006 (has links)
This investigation addresses how photosynthetic efficiency is affected when pea (Pisum sativum) plants are restricted to a sole nitrogen source (i.e. ammonium or nitrate). The pea plants were watered with different nutrient solutions without NO3- or NH4+ for different time-periods in order to assay for nitrogen content. The soluble ammonium and nitrate content was measured throughout the entire growth period. No major differences were observed in nitrogen content during the starvation period up to 25 days. For technical reasons, cultivation of plants could not be extended beyond this time. The chloroplasts and thylakoids were isolated after 25 days and assayed for chlorophyll contents and photosynthetic activity. The outcome of these tests indicates a small but unambiguous decrease in the photosynthesis activity for all treatments, relative the control.
87

High light stress in photosynthesis: the role of oxidative post-translational modifications in signaling and repair

Kasson, Tina Michelle Dreaden 08 August 2012 (has links)
Oxidative stress is a natural consequence of photosynthetic oxygen evolution and redox enzyme processes. Trp oxidation to N-formylkynurenine (NFK) is a specific, reactive oxygen species (ROS)-mediated reaction. This thesis work describes the identification and functional characterization of NFK in oxygen evolving Photosystem II (PSII). Although proteomics studies have confirmed NFK modifications in many types of proteins, limited knowledge on the biochemical significance exists. In vitro studies in thylakoids and PSII membranes were used to establish a correlation between oxidative stress, NFK formation, and photoinhibition. The in vivo effect of preventing Trp oxidation to NFK was assessed by site-directed mutation in the cyanobacteria Synechocystis sp. PCC 6803. This work provides insight into the role of NFK in photosynthetic oxygen evolution and photoinhibition. Based on the current knowledge of NFK, ROS, and repair, a new model is described. In this modified model for photoinhibition and repair, NFK plays a role in signaling for turnover of damaged proteins. NFK may play a similar role in replacement of damaged proteins in other systems.
88

Time Resolved Absorption Spectroscopy for the Study of Electron Transfer Processes in Photosynthetic Systems

Makita, Hiroki 07 August 2012 (has links)
Transient absorption spectroscopy was used to study light induced electron transfer processes in Type 1 photosynthetic reaction centers. Flash induced absorption changes were probed at 800, 703 and 487 nm, and on multiple timescales from nanoseconds to tens of milliseconds. Both wild type and menB mutant photosystem I reaction centers from the cyanobacterium Synechocystis sp. PCC 6803 were studied. Photosystem I reaction centers from the green algae Chlamydomonas reinhardtii, and the newly discovered chlorophyll-d containing organism Acaryochloris marina, were also studied. The flash induced absorption changes obtained for menB mutant photosystem I reaction centers are distinguishable from wild type at 800 nm. MenB mutant photosystem I reaction centers displays a large amplitude decay phase with lifetime of ~50 ns which is absent in wild type photosystem I reaction centers. It is hypothesized that this ~50 ns phase is due to the formation of the triplet state of primary electron donor.
89

Ruthenium-Manganese Complexes as Model Systems for Artificial Photosynthesis

Tran, Anh January 2001 (has links)
No description available.
90

Effects of different perturbative methods of the system-bath coupling on the reduced system dynamics

Schröder, Markus 18 January 2007 (has links) (PDF)
Diese Dissertation befasst sich mit der numerischen Behandlung dissipativer quantenmechanischer Prozesse im Rahmen der reduzierten Dichtematrix-Theorie. Zunächst werden Elektronen-Transferprozesse mit Hilfe einer hierarchischen Methode zur Lösung der Bewegungsgleichung der System-Dichtematrix untersucht. Hier liegt der Fokus auf der Untersuchung des Konvergenzverhaltens der Hierarchie mit der Anzahl der berücksichtigten Ebenen bei unterschiedlichen Abbruchverfahren. Es wird gezeigt, dass die Konvergenz stark von der Abbruchmethode und der Observablen abhängt. Weiterhin wird das lineare Absorptionsspektrum des B850 Pigment-Rings von Rhodispirillum molischianum mit verschiedenen Methoden zur Berücksichtigung der Effekte eines angekoppelten Bades berechnet. Diese Methoden basieren auf störungstheoretischen Ansätzen in der System-Bad-Kopplung. Es gelang unter Verwendung der modifizierten Redfield Theorie (MRT) einen Ausdruck für das Absorptionsspektrum herzuleiten. Bei der MRT werden Teile der System-Bad-Wechselwirkung exakt behandelt. Diese Methode wird in zwei Varianten diskutiert und anderen Methoden gegenübergestellt. Modellrechnungen werden für verschiedene Spektraldichten angefertigt, darunter eine, die aus einer Molekulardynamik(MD)- Simulation stammt. Ebenso wird der Einfluss statischer Unordnung der Pigment-Energien auf die Form des Absorptionsspektrums diskutiert. Dazu werden Spektren sowohl einer einzelnen Realisierung als auch des Ensembles dargestellt. Im Falle der Spektraldichte aus der MD-Simulation werden die Ensemble-Spektren zusätzlich mit experimentellen Daten verglichen. Weiterhin wird eine Rechnung mit der Hierarchie zum Spektrum des B850 Rings und weitere zur Populationsdynamik eines kleineren Systems diskutiert und mit Ergebnissen aus der MRT verglichen. Außerdem wird eine Methode zur stochastischen Propagation von mehrdimensionalen Wellenfunktionen entwickelt. Mit Hilfe von Sprung- Prozessen gelingt es die Freiheitsgrade des Systems zu entkoppeln, sodass mehrere eindimensionale Wellenfunktionen stochastisch propagiert werden können. Die exakte Wellenfunktion kann so als Ensemblemittel von Produkten eindimensionaler stochastischer Wellenfunktionen beschrieben werden.

Page generated in 0.0335 seconds