Spelling suggestions: "subject:"phrase extraction"" "subject:"phrase axtraction""
1 |
AUTOMATIC EXTRACTION OF COMPUTER SCIENCE CONCEPT PHRASES USING A HYBRID MACHINE LEARNING PARADIGMS. M. Abrar Jahin (14300654) 31 May 2023 (has links)
<p> With the proliferation of computer science in recent years in modern society, the number of computer science-related employment is expanding quickly. Software engineer has been chosen as the best job for 2023 based on pay, stress level, opportunity for professional growth, and balance between work and personal life. This was decided by a rankings of different news, journals, and publications. Computer science occupations are anticipated to be in high demand not just in 2023, but also for the foreseeable future. It’s not surprising that the number of computer science students at universities is growing and will continue to grow. The enormous increase in student enrolment in many subdisciplines of computers has presented some distinct issues. If computer science is to be incorporated into the K-12 curriculum, it is vital that K-12 educators are competent. But one of the biggest problems with this plan is that there aren’t enough trained computer science professors. Numerous new fields and applications, for instance, are being introduced to computer science. In addition, it is difficult for schools to recruit skilled computer science instructors for a variety of reasons including low salary issue. Utilizing the K-12 teachers who are already in the schools, have a love for teaching, and consider teaching as a vocation is therefore the most effective strategy to improve or fix this issue. So, if we want teachers to quickly grasp computer science topics, we need to give them an easy way to learn about computer science. To simplify and expedite the study of computer science, we must acquaint school-treachers with the terminology associated with computer science concepts so they can know which things they need to learn according to their profile. If we want to make it easier for schoolteachers to comprehend computer science concepts, it would be ideal if we could provide them with a tree of words and phrases from which they could determine where the phrases originated and which phrases are connected to them so that they can be effectively learned. To find a good concept word or phrase, we must first identify concepts and then establish their connections or linkages. As computer science is a fast developing field, its nomenclature is also expanding at a frenetic rate. Therefore, adding all concepts and terms to the knowledge graph would be a challenging endeavor. Creating a system that automatically adds all computer science domain terms to the knowledge graph 11 would be a straightforward solution to the issue. We have identified knowledge graph use cases for the school-teacher training program, which motivates the development of a knowl?edge graph. We have analyzed the knowledge graph’s use case and the knowledge graph’s ideal characteristics. We have designed a web-based system for adding, editing, and remov?ing words from a knowledge graph. In addition, a term or phrase can be represented with its children list, parent list, and synonym list for enhanced comprehension. We’ve developed an automated system for extracting words and phrases that can extract computer science idea phrases from any supplied text, therefore enriching the knowledge graph. Therefore, we have designed the knowledge graph for use in teacher education so that school-teachers can educate K-12 students computer science topicses effectively. </p>
|
2 |
Using Machine Learning and Graph Mining Approaches to Improve Software Requirements Quality: An Empirical InvestigationSingh, Maninder January 2019 (has links)
Software development is prone to software faults due to the involvement of multiple stakeholders especially during the fuzzy phases (requirements and design). Software inspections are commonly used in industry to detect and fix problems in requirements and design artifacts, thereby mitigating the fault propagation to later phases where the same faults are harder to find and fix. The output of an inspection process is list of faults that are present in software requirements specification document (SRS). The artifact author must manually read through the reviews and differentiate between true-faults and false-positives before fixing the faults. The first goal of this research is to automate the detection of useful vs. non-useful reviews. Next, post-inspection, requirements author has to manually extract key problematic topics from useful reviews that can be mapped to individual requirements in an SRS to identify fault-prone requirements. The second goal of this research is to automate this mapping by employing Key phrase extraction (KPE) algorithms and semantic analysis (SA) approaches to identify fault-prone requirements. During fault-fixations, the author has to manually verify the requirements that could have been impacted by a fix. The third goal of my research is to assist the authors post-inspection to handle change impact analysis (CIA) during fault fixation using NL processing with semantic analysis and mining solutions from graph theory. The selection of quality inspectors during inspections is pertinent to be able to carry out post-inspection tasks accurately. The fourth goal of this research is to identify skilled inspectors using various classification and feature selection approaches. The dissertation has led to the development of automated solution that can identify useful reviews, help identify skilled inspectors, extract most prominent topics/keyphrases from fault logs; and help RE author during the fault-fixation post inspection.
|
3 |
Automatic Extraction of Computer Science Concept Phrases Using a Hybrid Machine Learning ParadigmJahin, S M Abrar 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / With the proliferation of computer science in recent years in modern society, the number of computer science-related employment is expanding quickly. Software engineer has been chosen as the best job for 2023 based on pay, stress level, opportunity for professional growth, and balance between work and personal life. This was decided by a rankings of different news, journals, and publications. Computer science occupations are anticipated to be in high demand not just in 2023, but also for the foreseeable future. It's not surprising that the number of computer science students at universities is growing and will continue to grow. The enormous increase in student enrolment in many subdisciplines of computers has presented some distinct issues. If computer science is to be incorporated into the K-12 curriculum, it is vital that K-12 educators are competent. But one of the biggest problems with this plan is that there aren't enough trained computer science professors. Numerous new fields and applications, for instance, are being introduced to computer science. In addition, it is difficult for schools to recruit skilled computer science instructors for a variety of reasons including low salary issue. Utilizing the K-12 teachers who are already in the schools, have a love for teaching, and consider teaching as a vocation is therefore the most effective strategy to improve or fix this issue. So, if we want teachers to quickly grasp computer science topics, we need to give them an easy way to learn about computer science. To simplify and expedite the study of computer science, we must acquaint school-treachers with the terminology associated with computer science concepts so they can know which things they need to learn according to their profile.
If we want to make it easier for schoolteachers to comprehend computer science concepts, it would be ideal if we could provide them with a tree of words and phrases from which they could determine where the phrases originated and which phrases are connected to them so that they can be effectively learned. To find a good concept word or phrase, we must first identify concepts and then establish their connections or linkages. As computer science is a fast developing field, its nomenclature is also expanding at a frenetic rate. Therefore, adding all concepts and terms to the knowledge graph would be a challenging endeavor. Cre-
ating a system that automatically adds all computer science domain terms to the knowledge graph would be a straightforward solution to the issue. We have identified knowledge graph use cases for the schoolteacher training program, which motivates the development of a knowledge graph. We have analyzed the knowledge graph's use case and the knowledge graph's ideal characteristics. We have designed a webbased system for adding, editing, and removing words from a knowledge graph. In addition, a term or phrase can be represented with its children list, parent list, and synonym list for enhanced comprehension. We' ve developed an automated system for extracting words and phrases that can extract computer science idea phrases from any supplied text, therefore enriching the knowledge graph. Therefore, we have designed the knowledge graph for use in teacher education so that school-teachers can educate K-12 students computer science topicses effectively.
|
4 |
Extracting relevant answer phrases from text : For usage in reading comprehension question generation / Extrahering av relevanta svarsfraser från text : För användning vid generering av läsförståelsefrågorKärrfelt, Filippa January 2022 (has links)
This report presents a method for extracting answer phrases, suitable as answers to reading comprehension questions, from Swedish text. All code used to produce the results is available on github*. The method is developed using a Swedish BERT, a pre-trained language model based on neural networks. The BERT model is fine-tuned for three different tasks; two variations of token classification for answer extraction, and one for sentence classification with the goal of identifying relevant sentences. The dataset used for fine-tuning consists of 1814 question and answer pairs posed on 598 different texts, partitioned into a training, a validation and a test set. The models are assessed individually and are furthermore combined, using a method based on roundtrip consistency, into a system for filtering extracted answer phrases. The results for each of the models, and for the system combining them are evaluated both on quantitative measures (precision, recall and Jaccard index) and qualitative measures. Within the qualitative evaluation we both look at results produced by the models and conduct structured human evaluation with the help of four external evaluators. The final answer extraction model achieves a precision of 0.02 and recall of 0.95, with an average Jaccard index of 0.55 between the extracted answer phrases and the targets. When applying the system for filtering the precision is 0.03, the recall 0.50 and the Jaccard index 0.62 on a subset of the test data. The answer extraction model achieves the same results as the baseline on precision, outperforms it on recall by a large margin, and has worse results than the baseline on Jaccard index. The method applying filtering, which is evaluated on a subset of the test set, has worse precision than the baseline but outperform it on both recall and Jaccard index. In the qualitative evaluation we detect some flaws in the grammatical correctness of the extracted answers, as over 50% of them are classified as not grammatically correct. The joint result of the two evaluators on suitability show that 32% of the grammatically correct answers are suitable as answer phrases. / I rapporten presenteras en metod för extrahering av svarsfraser lämpliga som svar till läsförståelsefrågor på svensk text. All kod använd för att producera resultaten finns tillgänglig på github*. Metoden utgår från en svensk BERT, en tränad språkmodell baserad på neurala nätverk. BERT-modellen är finjusterad (“fine-tuned“) för tre olika uppgifter; två varianter av “token classification“ för extrahering av svarsfraser samt en för “sentence classification“ med målet att identifiera relevanta meningar. Datasetet som används för finjusteringen innehåller 1814 fråge- och svarspar baserade på 598 texter, uppdelat i ett tränings-, valideringsoch testset. Resultaten utvärderas separat för varje modell, och också för ett kombinerat system av de tre modellerna. I det kombinerade systemet extraherar en modell potentiella svarsfraser medans de andra två agerar som ett filter, baserat på en variant av “roundtrip consistency“. Resultaten för varje modell och för systemet för filtrering utvärderas både kvantitativt (på “precision“, “recall“ och Jaccard index) och kvalitativt. Fyra externa utvärderare rekryterades för utvärdering av resultaten på kvalitativa grunder. Modellen med bäst resultat når en precision av 0.02 och recall av 0.95, med ett snittvärde för Jaccard index av 0.55 mellan de extraherade och korrekta svarsfraserna. Med applicering av systemet för filtrering blir resultaten för precision 0.03, recall 0.50 och Jaccard index 0.62 på en delmängd av testdatat. Den BERT-baserade modellen för extrahering av svarsfraser når samma resultat som baseline på precision, bättre resultat på recall samt sämre resultat på Jaccard index. Resultaten för metoden med filtrering, som är utvärderad på en delmängd av testdatat, har sämre resultat än baseline på precision, men bättre resultat på recall och Jaccard index. I den kvalitativa utvärderingen upptäcker vi brister i den grammatiska korrektheten av de extraherade svarsfraserna, då mer än 50% av dem klassificeras som grammatiskt felaktiga. De sammantagna resultaten av utvärderingen av svarsfrasernas lämplighet visar att 32% av de svarsfraser som är grammatiskt korrekta är lämpliga som svarsfraser.
|
5 |
Navigating the "ACM" Digital Library with a new Visualization InterfaceCheenath, Jackson Jacob 17 July 2013 (has links)
No description available.
|
Page generated in 0.3609 seconds