• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Few and MaPhysique à quelques et à N- corps dans les gaz de Rydberg froidsny-body Physics in cold Rydberg gases

Huillery, Paul 12 March 2013 (has links) (PDF)
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction.
2

Quasithermalization of fermions in a quadrupole potential and evaporative cooling of 40K to quantum degeneracy / Quasithermalization de fermions dans un potentiel quadrupolaire et refroidissement évaporatif d’un gaz de 40K jusqu’à la dégénérescence quantique

Rabinovic, Mihail 11 May 2017 (has links)
Dans cette thèse, nous avons étudié expérimentalement les propriétés physiques des fermions ultra-froids grâce à une machine conçue pour refroidir un mélange fermionique de 6Li et 40K. Après une courte description concernant la construction de l'expérience et quelques améliorations que j'ai implémentées pendant ma thèse (telles que la désorption atomique par lumière ultraviolette dans le 2D-MOT), l'exposé se concentre sur deux observations principales de l'origine fermionique des gaz de potassium et de lithium.La première partie présente la quasithermalization du 6Li dans un potentiel quadrupolaire, créé par un piège magnétique. Malgré l'absence de collisions dans un gaz fermionique polarisé en dessous d'une température donnée, nous observons une redistribution d'énergie dans l'ensemble statistique après une excitation dans le piège linéaire. Une étude expérimentale détaillée ainsi qu'une analyse théorique du phénomène sont présentées. De plus, une transformation canonique de l'hamiltonien du système permet la description de particules sans masses dans un piège harmonique. Les résultats expérimentaux du système réel (gaz 6Li dans un potentiel quadrupolaire) sont donc réinterprétés pour décrire ces particules non massiques, difficiles à observer. Un développement supplémentaire de notre système expérimental permet également la réalisation d'un couplage spin-orbite non-abélien dans le gaz fermionique sans interactions.Dans la deuxième partie, on décrit la réalisation d'un gaz dégénéré de 40K à l'aide du refroidissement évaporatif. Une succession d'étapes d'évaporation, utilisant différentes technologies de piégeage, nous permet d'obtenir 1.5e5 atomes dans l'état fondamental à une température de 62nK, température équivalente à 17% de la température de Fermi. / In this thesis we investigate experimentally the physics of a cold fermionic mixture consisting of 6Li and 40K. After a short description of the experimental apparatus and of a few technical particularities implemented during my PhD, for example the light-induced atomic desorption in the 2D-MOT by UV-light, we focus on two main observations of the fermionic nature of the gas.The first part describes the quasithermalization of 6Li in a magnetic quadrupole potential. Even though collisions are absent in a spin-polarized fermionic gas below a given temperature, the statistical ensemble undergoes energy redistribution after an excitation within the linear potential. We present an extensive experimental study as well as a comprehensive theoretical analysis. Moreover, the studied Hamiltonian can be canonically mapped onto a system of massless, harmonically trapped particles and the previously developed results are re-interpreted in order to describe this experimentally inaccessible system. A further development of the realized experiment allows even for the implementation of spin-orbit coupling in a gas of non-interacting fermions.In the second part, we describe the evaporative cooling of 40K to quantum degeneracy. Through different evaporative cooling stages we reach with a final number of 1.5e5 atoms in the ground-state a temperature of 62nK, which corresponds to 17% of the Fermi temperature.
3

Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles / Physique à N corps des électrons dans les composés de métaux de transition et de terres rares : Structure électronique, propriétés magnétiques et défauts cristallins ponctuels à partir des premiers principes

Delange, Pascal 29 September 2017 (has links)
Le sujet de cette thèse est la théorie à partir des premiers principes de la structure électronique de matériaux présentant de fortes corrélations électroniques. D’importants progrès ont été faits dans ce domaine grâce aux implémentations modernes de Théorie de la Fonctionelle de Densité (DFT). Néanmoins, la méthode DFT a certaines limitations. D’une part, elle est faite pour décrire les propriétés de l’état fondamental mais pas des états excités des matériaux, bien que ces derniers soient également importants. D’autre part, les approximations de la fonctionnelle employées en pratique réduisent la validité de la DFT, conceptuellement exacte : en particulier elles décrivent mal les matériaux aux effets de corrélations les plus importants.Depuis les années 1990, différentes théoriques quantiques à N corps ont été utilisées pour améliorer ou compléter les simulations à base de DFT. Une des plus importantes est la Théorie du Champ Moyen Dynamique (DMFT), dans laquelle un modèle sur réseau est relié de manière auto-cohérente à un modèle plus simple d’impureté, ce qui donne de bons résultats à condition que les corrélations soient principalement locales. Nous présentons brièvement ces théories dans la première partie de cette thèse. Les progrès récents de la DMFT visent, entre autres, à mieux décrire les effets non-locaux, à comprendre les propriétés hors équilibre et à décrire de vrais matériaux plutôt que des modèles.Afin d’utiliser la DMFT pour décrire de vrais matériaux, il faut partir d’un calcul de structure électronique traitant tous les électrons au même niveau, puis appliquer une correction traitant les effets à N corps sur un sous-espace de basse énergie d’orbitales autour niveau de Fermi. La définition cohérente d’un tel sous-espace nécessite de tenir compte de la dynamique des électrons en-dehors de cet espace. Ces derniers, par exemple, réduisent la répulsion de Coulomb entre électrons dans le sous-espace. Néanmoins, combiner la DFT et la DMFT n’est pas aisé car les deux n’agissent pas sur la même observable. Dans la deuxième partie de cette thèse, nous étudions les modèles de basses énergies, comme la technique échange écranté + DMFT récemment proposée. Nous analysons l’importance de l’échange non-local et des interactions de Coulomb retardées, et illustrons cette théorie en l’appliquant aux états semi-cœur dans les métaux d10 Zn et Cd.Dans la dernière partie, nous utilisons ces méthodes pour étudier trois matériaux corrélés importants d’un point de vue technologique. Dans un premier temps, nous nous intéressons à la physique des mono-lacunes dans la phase paramagnétique du fer. De façon surprenante pour un défaut aussi simple, son énergie de formation n’a toujours pas été obtenue de manière cohérente par la théorie et l’expérience. Nous démontrons que cela est dû à de subtils effets de corrélations autour de la lacune dans la phase paramagnétique à haute température : cette phase est plus fortement corrélée que la phase ferromagnétique, où des calculs de DFT ont été faits.Dans un deuxième temps, nous étudions la transition métal-isolant dans la phase métastable VO2 B. Nous montrons que cette transition ressemble à celle entre la phase conventionnelle rutile et la phase M2 de VO2, mettant en jeu à la fois des liaisons covalentes dans les dimères et une transition de Mott sur les atomes V restants. Nous étudions également l’effet de lacunes d’oxygène sur la structure électronique de VO2.Enfin, nous proposons une technique au-delà de la DFT pour calculer le champ cristallin dans les oxydes et alliages de terres rares. Bien que l’amplitude de ce champ soit faible pour les orbitales localisées 4f des lanthanides, il est crucial pour leur caractère d’aimant permanent. En modifiant l’approximation Hubbard I pour résoudre les équations de DMFT, nous évitons une erreur d’auto-interaction faible en valeur absolue mais physiquement importante, démontrant l’importance de modèles de basse énergie correctement définis. / The topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models.
4

Few and Many-body Physics in cold Rydberg gases / Physique à quelques et à N- corps dans les gaz de Rydberg froids

Huillery, Paul 12 March 2013 (has links)
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction. / Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems.
5

Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems / Transitions de phase hors équilibre dans les systèmes optiques non linéaires

Minganti, Fabrizio 25 October 2018 (has links)
Dans cette thèse nous étudions théoriquement de systèmes dissipatifs pompés,décrits par une équation maîtresse de Lindblad. En particulier, nous adressons les problématiques liés à l’émergence de phénomènes critiques. Nous présentons une théorie générale reliant les transitions de phase du premier et deuxième ordres aux propriétés spectrales du superopérateur liouvillien. Dans la région critique, nous déterminons la forme générale de l’état stationnaire et de la matrice propre du liouvillien associée à son gap spectral. Nous discutons aussi l’utilisation de trajectoires quantiques individuelles afin de révéler l’apparition des transitions de phase. En ayant dérivé une théorie générale, nous étudions le modèle de Kerr en présence de pompage à un photon (cohérent) et à deux photons (paramétrique) ainsi que de dissipation. Nous explorons les propriétés dynamiques d’une transition de phase du premier ordre dans un modèle de Bose-Hubbard dissipatif et d’une de second ordre dans un modèle XYZ dissipatif d’Heisenberg. Enfin, nous avons considéré la physique des cavités soumises à de la dissipation à un et deux photons ainsi qu’un pompage à deux photons, obtenu par ingénierie de réservoirs. Nous avons démontré que l’état stationnaire unique est un mélange statistique de deux états chats de Schrödinger, malgré de fortes pertes à un photon.Nous proposons et étudions un protocole de rétroaction pour la génération d’états chat purs / In this thesis we theoretically study driven-dissipative nonlinear systems, whosedynamics is capture by a Lindblad master equation. In particular, we investigate theemergence of criticality in out-of-equilibrium dissipative systems. We present a generaland model-independent spectral theory relating first- and second-order dissipative phasetransitions to the spectral properties of the Liouvillian superoperator. In the critical region,we determine the general form of the steady-state density matrix and of the Liouvillianeigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevanceof individual quantum trajectories to unveil phase transitions. After these general results,we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in thepresence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of thedissipative XYZ Heisenberg model presenting a first-order and a second-order dissipativephase transition, respectively. Finally, we investigate the physics of photonic Schrödingercat states in driven-dissipative resonators subject to engineered two-photon processes andone-photon losses. We propose and study a feedback protocol to generate a pure cat-likesteady state
6

Thermodynamics of strongly interacting bosons on a lattice : new insights and numerical approaches / Thermodynamique des bosons fortement interagissants : nouveaux résultats et approches numériques

Malpetti, Daniele 16 December 2016 (has links)
Les atomes froids dans les réseaux optiques permettent d'avoir un contrôle sans précédent des états a N-corps fortement corrélés. Pour cette raison, ils représentent un excellent outil pour l'implémentation d'un « simulateur quantique », utile pour réaliser de manière expérimentale de nombreux hamiltoniens de systèmes d'intérêt physique. En particulier, ils rendent possible la création de champs de jauge artificiels; ces derniers permettant d'accéder à la physique du magnétisme frustré. Dans ce travail, il s'agit de s'intéresser à la thermodynamique des atomes froids, en abordant ce sujet de manière théorique et numérique. A ce jour, le Monte Carlo quantique est la méthode la plus efficace dans ce domaine. Néanmoins, en raison de ce qu'on appelle le « problème du signe », elle ne peut s'appliquer qu'à une classe restreinte de systèmes, et dont par exemple les systèmes frustrés ne font pas partie. L'intérêt de cette thèse est de développer une nouvelle méthode approximée fondée sur une approche Monte Carlo. La première partie de cette thèse est consacrée à des considérations de nature théorique sur la structure spatiale des corrélations classiques et quantiques. Ces résultats nous permettent de développer, dans une deuxième partie, une approximation nommée « champ moyen quantique ». Celle-ci permet de proposer, dans une troisième partie, une méthode numérique qu'on appelle « Monte Carlo du champ auxiliaire » et qu'on applique à des cas d'intérêt physique, notamment au réseau triangulaire frustré. / Cold atoms in optical lattices offer unprecedented control over strongly correlatedmany-body states. For this reason they represent an excellent tool for the implementation ofa “quantum simulator”, which can be used to realize experimentally several Hamiltonians ofsystems of physical interest. In particular, they enable the engineering of artificial gaugefields, which gives access to the physics of frustrated magnetism. In this work, we study thethermodynamics of cold atoms both from a theoretical and a numerical point of view. Atpresent days, the most effective method used in this field is the quantum Monte Carlo. Butbecause of the so-called “sign problem” it can only be applied to a limited class of systems,which for example do not include frustrated systems. The interest of this thesis is to developof a new approximated method based on a Monte Carlo approach. The first part of this workis dedicated to theoretical considerations concerning the spatial structure of quantum andclassical correlations. These results permit to develop, in the second part, an approximationcalled quantum mean-field. This latter allows to propose, in the third part, a numericalmethod that we call “auxiliary-field Monte Carlo” and that we apply to some systems ofphysical interest, among which the frustrated triangular lattice.
7

Non-conventional Many-body Phases in Ultracold Dipolar Systems / Phases à N corps non-conventionnelles dans des systemes ultra-froids dipolaires

Fedorov, Aleksey 28 June 2017 (has links)
Le problème de la détection et de ladescription des nouveaux états quantiquesmacroscopiques, caractérisées par des propriétésexotiques et non-conventionnelles, estd’importance fondamentale dans la physiquemoderne. Ces états offrent des perspectivesfascinantes dans le domaine de traitementd’information, de simulations quantiques et derecherche des nouveaux types des matériaux.Dans ce travail de thèse nous développons unethéorie qui permet de décrire des phases non conventionnellesdans des systèmes des gazultra-froids dipolaires. Ces systèmes sontactivement étudiés expérimentalement enutilisant des atomes à grand-spins, desmolécules polaires et des excitations dipolairesdans des semi-conducteurs. Nous mettonsl'accent sur la révélation du rôle de l’interactiondipôle-dipôle à long porté.Nous considérons l’effet de rotonization dansun système de gaz des bosons dipolaires «tiltés»aux interactions faibles dans une couchehomogène. Nous prédisons l’effet derotonization pour un gaz de Bose faiblementcorrélé des excitons dipolaires dans une couchede semi-conducteur et nous calculons lediagramme de stabilité. Ensuite, nousconsidérons des superfluides d’onde-p desfermions identiques dans des réseaux 2D.Finalement, nous faisons une discussion sur unautre état superfluide intéressant des moléculespolaires fermioniques, qui devrait apparaitredans des systèmes bicouches. / The problem of revealing anddescribing novel macroscopic quantum statescharacter- ized by exotic and non-conventionalproperties is of fundamental importance formodern physics. Such states offer fascinatingprospects for potential applications in quantumin- formation processing, quantum simulation,and material research. In the present Thesis wedevelop a theory for describing nonconventionalphases of ultracold dipolar gases.The related systems of large-spin atoms, polarmolecules, and dipolar excitons in semiconductorsare actively studied in experiments.We put the main emphasis on revealing the roleof the long-range character of the dipole-dipoleinteraction.We consider the effect of rotonization for a 2Dweakly interacting gas of tilted dipolar bosonsin a homogeneous layer. We predict the effectof rotonization for a weakly correlated Bosegas of dipolar excitons in a semiconductorlayer and calculate the stability diagram. Wethen consider p-wave superfluids of identicalfermions in 2D lattices. Finally, we discussanother interesting novel superfluid offermionic polar molecules

Page generated in 0.0611 seconds