• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelling, characterisation and application of GaN switching devices

Murillo Carrasco, Luis January 2016 (has links)
The recent application of semiconductor materials, such as GaN, to power electronics has led to the development of a new generation of devices, which promise lower losses, higher operating frequencies and reductions in equipment size. The aim of this research is to study the capabilities of emerging GaN power devices, to understand their advantages, drawbacks, the challenges of their implementation and their potential impact on the performance of power converters. The thesis starts by presenting the development of a simple model for the switching transients of a GaN cascode device under inductive load conditions. The model enables accurate predictions to be made of the switching losses and provides an understanding of the switching process and associated energy flows within the device. The model predictions are validated through experimental measurements. The model reveals the suitability of the cascode device to soft-switching converter topologies. Two GaN cascode transistors are characterised through experimental measurement of their switching parameters (switching speed and switching loss). The study confirms the limited effect of the driver voltage and gate resistance on the turn-off switching process of a cascode device. The performance of the GaN cascode devices is compared against state-of-the-art super junction Si transistors. The results confirm the feasibility of applying the GaN cascode devices in half and full-bridge circuits. Finally, GaN cascode transistors are used to implement a 270V - 28V, 1.5kW, 1 MHz phase-shifted full-bridge isolated converter demonstrating the use of the devices in soft-switching converters. Compared with a 100 kHz silicon counterpart, the magnetic component weight is reduced by 69% whilst achieving a similar efficiency of 91%.
12

Částečné výboje v elektronických zařízeních / Partial Discharge in Electronic Equipments

Mammadov, Anar January 2009 (has links)
Tato disertační práce se věnuje studiu částečných výbojů (PD) způsobených poklesem spolehlivosti a životnosti elektronických zařízení a systémů. Diagnostika PD je dnes známá metoda pro vysoké napětí u vysoko-výkonných zařízení. V případě elektronických zařízení PD testování není ale běžně používáná metoda, přestože je zde také potenciál pro vysoké elektrické zatížení vzhledem k velmi krátké vzdálenosti. Tato práce je zaměřena na vyšetřování PD činnosti u elektronických zařízení. Bylo navrženo a provedeno pracoviště pro diagnostiku PD v elektronických zařízeních. Pracovní frekvence se pohybuje od několika stovek Hz až 100 kHz. Maximální amplituda PD testovaného napětí je vyšší než 10 kV. Navzdory jednoduché konstrukci toto zařízení přináší vysokou spolehlivost měření. Více než 300 PD testů bylo provedeno na různých elektronických zařízeních a elektronických součástí,např. na planárních transformátorech a elektronických komponentách používaných při vysoko-napěťových měničích
13

Methodologies for Design-Oriented Electromagnetic Modeling of Planar Passive Power Processors

Prasai, Anish 15 August 2006 (has links)
The advent and proliferation of planar technologies for power converters are driven in part by the overall trends in analog and digital electronics. These trends coupled with the demands for increasingly higher power quality and tighter regulations raise various design challenges. Because inductors and transformers constitute a rather large part of the overall converter volume, size and performance improvement of these structures can subsequently enhance the capability of power converters to meet these application-driven demands. Increasing the switching frequency has been the traditional approach in reducing converter size and improving performance. However, the increase in switching frequency leads to increased power loss density in windings and core, with subsequent increase in device temperature, parasitics and electromagnetic radiation. An accurate set of reduced-order modeling methodologies is presented in this work in order to predict the high-frequency behavior of inductors and transformers. Analytical frequency-dependent expressions to predict losses in planar, foil windings and cores are given. The losses in the core and windings raise the temperature of the structure. In order to ensure temperature limitation of the structure is not exceeded, 1-D thermal modeling is undertaken. Based on the losses and temperature limitation, a methodology to optimize performance of magnetics is outlined. Both numerical and analytical means are employed in the extraction of transformer parasitics and cross-coupling. The results are compared against experimental measurements and are found to be in good accord. A simple near-field electromagnetic shield design is presented in order to mitigate the amount of radiation. Due to inadequacy of existing winding technology in forming suitable planar windings for PCB application, an alternate winding scheme is proposed which relies on depositing windings directly onto the core. / Master of Science
14

Částečné výboje v elektronických zařízeních pracujících na vyšších kmitočtech / Partial Discharge in High Frequency Electronic Equipment

Havlíček, Tomáš January 2009 (has links)
The presented thesis is focused on knowledge extension in the area of partial discharge measurements and evaluation at frequencies higher than 1 kHz. The thesis includes the design and set up of the measuring workplace equipped for measuring partial discharges, including the methodology of the measuring and calibration procedures necessary for the achievement of reproducible results. Another part of the thesis deals with the technology of acoustical and electromagnetic sensors convenient for the diagnostics and localization of partial discharges in devices, that work at voltages above 500 V. Electrical circuits that enable data evaluation by using the signal from a sensor working on amplitude analysis principle were developed. For PD detection a PC controlled measuring device working on amplitude analysis principle had to be designed and realized. The possibilities of the workplace have been demonstrated in the process of development of the insulating systems for pulse transformers. Thesis results can significantly contribute to a higher quality of newly designed electronic devices and systems working at voltages above 500 V.
15

Analysis of high-voltage low-current DC/DC converters for electrohydrodynamic pumps

Axelsson, Sigge, Gartner, Jonas, Stafström, Axel January 2023 (has links)
Moving parts cause vibrations and tend to wear out. In applications where maintenance is complicated, solutions without moving parts are therefore advantageous. Electrohydrodynamic pumps are such a solution. Instead of mechanical propulsion, they use strong electric fields to induce movement in a dielectric cooling liquid. These pumps require very little power, but to generate sufficiently strong electric fields, they need to be fed with very high voltage.  This project explored various methods for designing DC/DC-converters which fulfil the demands of an electrohydrodynamic pump. This was done by altering and combining existing topologies that were deemed to be relevant. The main method for testing and evaluation was by simulating in LTspice. The project also briefly investigated methods of overcurrent protection. This was relevant because gas bubbles in the cooling fluid can cause electric arcs which damage the pumps. Three converter topologies were chosen for further evaluation. First, a conventional resonant Royer-based converter that has previously been used by APR Technologies which was altered by the inclusion of a feedback loop. Second, a high-frequency resonant Royer-based converter with a planar air-core transformer. Third, a transformerless converter with a switched boost converter IC. All circuits included a Cockroft-Walton voltage multiplier bridge. The two resonant Royer-based converters fulfilled all requirements except the one on efficiency, while the transformerless converter fulfilled all requirements except the one on cost, set by APR. The more expensive transformerless converter had a significantly higher efficiency and a wider range of acceptable input voltages. Furthermore three general conclusions were drawn. The first was that planar air-core transformers are not beneficial compared to conventional transformers in these type of applications. The second was that a discrete voltage regulator controlled by feedback from the output is more effective than using a voltage regulator without feedback, as it also eliminates temperature and load variations. The third conclusion was that to protect the circuits from overcurrent, a large series resistor is needed, which causes significantly lowered efficiency.

Page generated in 0.4606 seconds