• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 12
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

<b>Tomato receptor like-cytoplasmic kinases regulate plant </b><b>response to pathogens </b>

Sara Gebremeske Hailemariam (17990398) 21 April 2024 (has links)
<p dir="ltr">Plant immunity to pathogens involves a network of genetic, molecular, and cellular processes that culminate in activation of responses that restrict pathogen ingress and reduce diseases symptoms. Mechanisms of pathogen recognition, signaling, and activation of immune responses are well understood especially for (hemi) biotrophic pathogens. By contrast, there is paucity of knowledge on immune signaling for responses to broad host necrotrophic fungi such as <i>Botrytis cinerea (Botrytis</i><i>)</i>. Plant resistance to such pathogens is genetically complex with no complete resistance observed in any host species. However, genetic variation for quantitative resistance has been documented although the molecular mechanisms are poorly understood. In the current study, we focused on functional dissection of components of tomato immune signaling underlying quantitative resistance to <i>Botrytis</i>. Tomato BIK1-family receptor-like cytoplasmic kinases (RLCKs) were studied using gene edited mutants, and subsequent molecular, biochemical, and genomic characterizations of the mutants and the corresponding proteins. In addition, <i>Botrytis</i> induced transcriptome of Arabidopsis and tomato were compared to explain observed differences in their resistance to the fungus. The results from these studies are described in four chapters. Chapter 1 provides a review of RLCKs and their function in plant responses to biotic and abiotic stresses. Chapter 2 presents the genetic, molecular, and biochemical characterization of tomato RLCK, TPK1B RELATED PROTEIN KINASE (TPK09) in fungal resistance and responses to light stress. Chapter 3 highlights observations on the functions of TPK1B RELATED PROTEIN KINASE7 (TPK07) in fungal and bacterial resistance. Lastly, Chapter 4 covers comparative transcriptome analysis of Arabidopsis and tomato responses to <i>Botrytis</i>.</p><p dir="ltr">Specialized cell-surface receptors mediate the perception of environmental changes. A subset of plant cell surface receptors recognizes pathogen-associated molecular patterns (PAMPs), which are immunogenic pathogen or host-derived molecules, peptides (phytocytokines), lipids, and carbohydrates. PAMPs are perceived by surface receptors designated as pattern recognition receptors (PRRs) that are categorized as receptor like kinases (RLKs) or receptor like proteins (RLPs). Recognition of PAMPs through PRR is an evolutionarily conserved pathway that aids plants in specific recognition of pathogens. The signaling events initiated by PRRs are connected to PRR-associated RLCKs, which amplify the signal and activate other regulatory proteins. PRR-RLCK activation is linked to immune messengers ROS, Ca<sup>+</sup>, and MAPKs based on extensive research in Arabidopsis which also established the paradigm for RLCKs functions in integrating signals from various PRRs. However, insufficient attention was given to RLCK functions in crop plant responses to biotic and abiotic stressors and, thus, limited data exists on RLCKs from crops of agronomic and horticultural significance. To address this gap, we conducted genetic, genomic, and molecular studies on the biological functions of tomato TPK1B RELATED KINASES TPK09 and TPK07.</p><p dir="ltr">To determine the function of TPK09 and TPK07, mutant alleles of these two RLCKs were generated through CRISPR-Cas9 gene editing. Loss of function mutants of <i>tpk09</i> exhibited increased susceptibility to <i>Botrytis</i> but showed no altered responses to the bacterial pathogen <i>P. syringae</i>. Plants carrying mutant alleles displayed reduced immune gene expression and impaired accumulation of reactive oxygen species in response to chitin and flg22. In addition to <i>Botrytis</i> and several plant hormones, the expression of <i>TPK09</i> gene is induced by light but suppressed by darkness. The exposure of wildtype tomato plants to light-emitting diodes (LEDs) reduced hypocotyl length but <i>tpk09</i> mutants were insensitive. Furthermore, <i>tpk09</i> mutants also exhibited increased accumulation of H<sub>2</sub>O<sub>2</sub> and extensive necrosis, suggesting a disturbance in cellular homeostasis in response to changes in light spectra, ultimately leading to enhanced susceptibility to <i>Botrytis</i>. Although the global impact of TPK09 on <i>Botrytis</i> induced transcriptome was limited, the expression of the tomato negative regulator of cell death SlBI-like1 gene was significantly reduced in the mutant, particularly in response to the combined effect of <i>Botrytis</i> and LED light. The data suggest TPK09 regulates SlBI-like1 gene expression, but the mechanism is unclear. Further, the impairment of the light stress response in <i>tpk09</i> mutants was substantiated by a reduction in chlorophyll content and damage to the photosynthetic machinery, along with a clear reduction in the expression of genes related to light harvesting and photosynthesis. Regulatory network analysis using RNA-seq data identified TPK09 regulated genes related to stress and oxidative damage. This was further supported from proteomic studies of tomato TPK09-HA transgenic plants. Immunoprecipitation coupled with mass spectrometry revealed that proteins associated with photosynthesis and photosystem subunits were enriched in TPK09 overexpressing plant. Our data establishes that TPK09 is required for fungal resistance and light stress by maintaining functional photosynthetic machinery and ROS homeostasis.</p><p dir="ltr">We also studied the function of tomato TPK07 which is another member of the RLCK-VII family. Through analysis of <i>tpk07</i> mutants, we show that TPK07 it required for resistance to both <i>Botrytis</i> and <i>P. syringae</i> expressing the cysteine protease type III effector AvrPphB which cleaved TPK07 protein. However, further studies are needed to understand the biological function of this cleavage. The expression of TPK07 was induced by <i>Botrytis</i> and the bacterial PAMPs flg22, flg28, and csp22. TPK07 belongs to the RLCK VII-5 subfamily and clusters in the same clade with Arabidopsis PBL34 (AT5G15080), PBL35 (AT3G01300), and PBL36 (AT3G28690) that functions in immunity to <i>P. syringae</i>. In addition, <i>tpk07</i> mutants showed reduced accumulation of ROS in response to chitin and lipopolysaccharide. Moreover, TPK07 is a plasma membrane-localized kinase with a unique N-terminal sequence, offering a research avenue for future structural analysis to understand its contribution in pathogen responses.</p><p dir="ltr">In the last chapter, we conducted comparative analyses of <i>Botrytis</i> induced transcriptome of Arabidopsis and tomato to explain the observed differences between the two plant species in their resistance to <i>Botrytis</i>. Over the years, we observed tomato is more susceptible to <i>Botrytis</i> than Arabidopsis under the same disease assay conditions, but the mechanism is not known. We sought to gain insight into the immune responses of the two species and identify targets for future functional analyses that can explain the differential pathogen responses. Many separate studies<i> </i>have demonstrated<i> </i>that <i>Botrytis</i> causes extensive transcriptional reprogramming in Arabidopsis and tomato. Our results from the comparative studies of in-house generated data identified differentially expressed genes (DEGs), Gene Ontology terms, and metabolic pathways that are specific or shared between the two species. Interestingly, some genes show distinct expression pattern in tomato and Arabidopsis consistent with previous observation that some genes in the two species show contrasting disease resistance functions. Genes with distinct expression patterns warrant further studies to better understand differences in host immune responses between the two species. In addition, transcription factors (TFs) and regulatory hub genes that could be important for further studies were identified.</p><p dir="ltr">In sum, our data establishes the functions of two tomato RLCKs in fungal resistance, interactions between fungal resistance and plant responses to light, and the conserved and contrasting gene expression profiles of tomato and Arabidopsis genes, laying the foundation for future studies.</p>
32

Identification du xyloglucane comme nouvel éliciteur oligosaccharidique stimulant l’immunité de Vitis vinifera et d’Arabidopsis thaliana et caractérisation de deux récepteurs aux chito-oligosaccharides chez la vigne (VvLYK1-1 et VvLYK1-2) / Identification of the cell-wall derived xyloglucan as a new damage-associated molecular pattern (DAMP) eliciting plant immunity in Vitis vinifera and Arabidopsis thaliana and characterization of two chito-oligosaccharide pattern recognition receptors

Claverie, Justine 21 December 2018 (has links)
L’activation des réponses immunitaires des plantes repose sur la reconnaissance de motifs moléculaires associés aux pathogènes (aussi appelés PAMP) par des récepteurs de l’immunité, également nommés PRR (pattern recognition receptors). La chitine, principal composant de la paroi des champignons, est un PAMP bien caractérisé qui induit des réponses de défense aussi bien chez les mammifères que chez les plantes.La première partie de cette étude met en évidence que deux chito-oligosaccharides, la chitine et le chitosan, agissent comme des PAMP chez la vigne (Vitis vinifera) puisqu’ils induisent des évènements précoces de signalisation, l’expression de gènes de défense et une résistance contre des agents pathogènes. Ces résultats suggèrent que des systèmes de perception existent chez la vigne. Une analyse phylogénétique a permis d’identifier trois récepteurs kinases à domaine LysM (LysM-RK ou LYK) chez V. vinifera (VvLYK1-1, -2, -3) appartenant au même clade que le récepteur à la chitine chez Arabidopsis et nommé AtCERK1 (Arabidopsis thaliana Chitin Elicitor Receptor Kinase 1). Leur analyse fonctionnelle a été réalisée par complémentation du mutant d’Arabidopsis Atcerk1, affecté dans la perception de la chitine. Nos résultats montrent que VvLYK1-1 et VvLYK1-2, mais pas VvLYK1-3, complémentent fonctionnellement le mutant Atcerk1 en restaurant l’activation des MAPK (Mitogen-Activated Protein Kinases) et l’expression de gènes de défense induits par les chito-oligosaccharides. De plus, l’expression de VvLYK1-1 chez Atcerk1 restaure la résistance basale à l’agent de l’oïdium de la vigne (Erysiphe necator).La seconde partie du projet s’est focalisée sur les éliciteurs oligosaccharidiques de type « damage-associated molecular patterns (DAMP) ». Ces molécules endogènes peuvent provenir de la dégradation de la paroi lors d’une attaque et sont capables d’activer les réponses immunitaires de la plante. Les DAMP les mieux caractérisés actuellement sont les oligogalacturonates (OG), des fragments de pectine qui induisent des réponses immunitaires chez de nombreuses espèces végétales dont l’activation de MAPK, la production d’H2O2, l’expression de gènes de défense et le dépôt de callose. Nous avons montré dans cette étude que les xyloglucanes (Xh), des fragments d’hémicellulose pariétale purifiés, induisaient l’activation de MAPK et l’expression de gènes de défense chez la vigne et Arabidopsis, afin d’induire une résistance contre le champignon nécrotrophe Botrytis cinerea. Les Xh induisent également la production de resvératrol, une phytoalexine majoritaire chez la vigne, et un dépôt de callose chez Arabidopsis. Par une approche génétique, nous avons identifié certains composants de la signalisation induite par les Xh chez Arabidopsis. L’utilisation de mutants suggère que la résistance induite par les Xh contre B. cinerea est dépendante des voies de la camalexine, de l’acide salicylique, de l’acide jasmonique et de l’éthylène chez Arabidopsis. De manière globale, nos résultats mettent en lumière que les xyloglucanes peuvent être considérés comme de nouveaux éliciteurs de l’immunité chez la vigne et Arabidopsis. / Activation of the plant immune responses requires recognition of common pathogen-associated molecular pattern (PAMP) by their cognate pattern recognition receptors (PRR). Chitin, a major component of fungal cell walls, is a well-known PAMP that triggers defense responses in several mammal and plant species.In the first part of this study, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signaling events, defense gene expression, and resistance against pathogens. These two PAMPs are active in grapevine suggesting that at least one perception system exists. Phylogenetic analysis clearly distinguished three V. vinifera LysM Receptor Kinases (VvLYK1-1, -2, -3) located in the same clade as the Arabidopsis Chitin Elicitor Receptor Kinase 1 (AtCERK1), which mediates chitin-induced immune responses. Their functional characterization was achieved by complementation assays in the Atcerk1 mutant, impaired in chitin perception. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the loss of AtCERK1 function by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator).The second part of this study focused on damaged-associated molecular patterns (DAMP), endogenous molecules that can be released from the plant cell wall during an attack and activate the plant innate immunity. Until now, the best characterized DAMPs are oligogalacturonides (OG) coming from pectin fragments that induce innate immune responses in various plant species, including MAPK activation, H2O2 production, defense gene expression and callose deposition. In this study, we showed that purified xyloglucans (Xh), derived from the plant cell wall hemicellulose, elicit MAPK activation and immune gene expression in grapevine (V. vinifera) and Arabidopsis to trigger induced resistance against the necrotrophic fungus Botrytis cinerea. Xh also elicit the production of resveratrol, the main grapevine phytoalexin, and callose deposition in Arabidopsis. Using a genetic approach, we identified some signaling components of Xh-induced immunity. The use of Arabidopsis mutants suggests that Xh-induced resistance against B. cinerea is dependent on the camalexin, salicylate, jasmonate and ethylene pathways. Taken together, our data highlight that Xh can be considered as new elicitors of grapevine and Arabidopsis immunity.
33

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum) / Biologische Kontrolles der Kohlhernie (Klumpfusskrankheit; Plasmodiophora brassicae) durch einen endophytischen Pilz (Acremonium alternatum)

Auer, Susann 18 September 2015 (has links) (PDF)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.
34

Arabidopsis thaliana class II TGA transcription factors provide a molecular link between salicylic acid and ethylene defense signalling / Arabidopsis thaliana Klasse II TGA-Transkriptionsfaktoren verbinden den Salicylsäure- mit dem Ethylen-Signalweg

Zander, Mark 27 April 2011 (has links)
No description available.
35

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum)

Auer, Susann 18 August 2015 (has links)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.
36

Effects of a widely conserved AvrE-family effector and the phytotoxin coronatine on host plant defense signaling pathways

Turo, Alexander Joshua January 2021 (has links)
No description available.
37

Investigation of a putative mitochondrial Twin Arginine Translocation pathway in <i>Arabidopsis thaliana</i>

Weerakoon, Tasmeen Shiny 02 August 2017 (has links)
No description available.
38

Caractérisation d'une nouvelle voie de signalisation impliquée dans la défense stomatique et applications agronomiques / Caracterization of a new signaling pathway involved in plant stomatal defense and agronomical outcomes

Rondet, Damien 29 March 2018 (has links)
La défense pré-invasive ou stomatique est un mécanisme qui consiste en la fermeture des pores stomatiques présents sur les organes aériens des plantes lorsque celles-ci sont en contact avec certains agents pathogènes. Cette fermeture empêche ces derniers de pénétrer dans l’hôte et de le coloniser. Ce mécanisme s’active chez Arabidopsis inoculée par la bactérie Pseudomonas syringae pv tomato (Pst) DC3000. Des travaux préliminaires de notre groupe avaient montré que la carbonylation de protéines cibles par des espèces réactives électrophiles (EREs) représentait une étape cruciale de la signalisation cellulaire nécessaire à la mise en place de cette défense. Par des approches de marquage ciblé et de purifications couplées à des identifications par spectrométrie de masse en tandem (nanoLC-MS/MS), nous avons pu caractériser une sérine-thréonine protéine kinase qui joue un rôle déterminant dans ce mécanisme de défense. En effet, des plantes mutées sur le gène codant cette protéine ont perdu la capacité à induire la fermeture de leurs stomates et à déployer la défense stomatique vis-à-vis de la bactérie. De plus, l’introduction de la chimie click (cycloaddition alcyne-azide catalysée par le cuivre), dans nos approches de marquage, nous a permis d’identifier un ensemble de protéines très probablement carbonylées et susceptibles de jouer un rôle crucial dans ces évènements cellulaires qui contribuent à une part de l’immunité végétale. Enfin, les EREs étant capables d’induire la fermeture des stomates, nous avons cherché à savoir, dans le cadre de l’établissement d’une preuve de concept, si leur application sur des plantes permettrait la protection de ces dernières contre Pst. / Pre-invasive or stomatal defense is a mechanism which consists of closing the stomata present at surface of aerial organs of plants when they are in contact with certain pathogens. This closure prevents them from entering and colonizing the host. This mechanism is activated in Arabidopsis inoculated by the bacterium Pseudomonas syringae pv tomato (Pst) DC3000. Preliminary work by our group had shown that carbonylation of target proteins by reactive electrophile species (RES) was a crucial step of the cell signaling required to set up this defense. Through targeted tagging and purifications approaches coupled with tandem mass spectrometry identifications (nanoLC-MS/MS), we have been able to characterize a serine-threonine protein kinase that plays a crucial role in this defense mechanism. Indeed, plants mutated on the gene encoding this protein have lost their ability to trigger stomatal closure and to deploy the stomatal defense against the bacteria. In addition, the use of the click chemistry and notably, the copper-catalyzed alkyne-azide cycloaddition, in our tagging approaches has enabled us to identify a set of proteins that are most likely carbonylated and likely to play a significant role in these cell events that contribute to part of plant immunity. Finally, since RES are able to induce stomatal closure we sought to find out, in the context of establishing a proof-of-concept, whether their application to plants would enable them to be protected against the Pst.
39

Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion Channels

Chin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development. The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function. First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta. The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.
40

Investigation of Structure-function and Signal Transduction of Plant Cyclic Nucleotide-gated Ion Channels

Chin, Kimberley 07 January 2014 (has links)
Cyclic nucleotide-gated channels (CNGCs) are non-selective cation channels that were first identified in vertebrate photosensory and olfactory neurons. Although the physiological roles and biophysical properties of animal CNGCs have been well studied, much less is known about these channels in plants. The Arabidopsis genome encodes twenty putative CNGC subunits that are postulated to form channel complexes that mediate various physiological processes involving abiotic and biotic stress responses, ion homeostasis and development. The identification of Arabidopsis autoimmune CNGC mutants, such as defense no death class (dnd1 and dnd2), and the constitutive expressor of pathogenesis related genes 22 (cpr22) implicate AtCNGC2, 4, 11 and 12 in plant immunity. Here, I present a comprehensive study of the molecular mechanisms involved in CNGC-mediated signaling pathways with emphasis on pathogen defense. Previously, a forward genetics approach aimed to identify suppressor mutants of the rare gain-of-function autoimmune mutant, cpr22, identified key residues that are important for CNGC subunit interactions and channel function. First, I present a structure-function analysis of one of these suppressor mutants (S58) that revealed a key residue in the cyclic nucleotide binding domain involved in the stable regulation of CNGCs. Second, I present a new suppressor screen using AtCNGC2 T-DNA knockout mutants that specifically aimed to identify novel downstream components of CNGC-mediated pathogen defense signaling. In this screen, I successfully isolated and characterized the novel Arabidopsis mutant, repressor of defense no death 1 (rdd1), and expanded this study to demonstrate its involvement in AtCNGC2 and AtCNGC4-mediated signal transduction. Additionally, I demonstrated for the first time, the physical interaction of AtCNGC2 and AtCNGC4 subunits in planta. The findings presented in this thesis broaden our current knowledge of CNGCs in plants, and provide a new foundation for future elucidation of the structure-function relationships and signal transduction mediated by these channels.

Page generated in 0.0826 seconds