• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assay and properties of plasmalogenase under normal and pathological conditions /

D'Amato, Robert Anthony January 1974 (has links)
No description available.
2

Lipids of mitochondria in fibroblasts and their nexus to life history in temperate and tropical birds

Calhoon, Elisabeth Ann 28 July 2011 (has links)
No description available.
3

Métabolisme des plasmalogènes dans les cellules gliales rétiniennes : interactions cellule-cellule au cours du développement vasculaire rétinien normal ou pathologique / Plasmalogen metabolism in retinal glial cells : interaction between cells during normal or pathological vascular development

Mazzocco, Julie 14 February 2017 (has links)
Dans les pays industrialisés, les pathologies oculaires à composante vasculaires, que ce soit la rétinopathie du prématuré (ROP), la rétinopathie du diabétique ou la dégénérescence lié à l’âge, représentent la première cause de cécité respectivement chez l’enfant, l’adulte et la personne âgée. Plusieurs études sur l’homme ou sur des modèles animaux ont souligné le rôle crucial joué des acides gras polyinsaturés (AGPI) au cours de ces rétinopathies et notamment l’action préventive des acides gras polyinsaturés oméga 3 (AGPI n-3) sur l’angiogenèse pathologique. Ces AGPI sont estérifiés dans les glycérophospholipides constituant les membranes cellulaires. On les retrouve également dans une classe particulière de glycérophospholipides, les plasmalogènes. La particularité des plasmalogènes réside dans leur liaison vinyl-éther en position sn-1 au lieu d’une liaison ester dans les autres glycérophospholipides. Les AGPI sont libérés des plasmalogènes par une phospholipase indépendante au calcium, la iPLA2, pour devenir des métabolites actifs. Les plasmalogènes via la libération des AGPI joueraient un rôle dans la mise en place et la maturation du réseau vasculaire rétinien et ce, notamment grâce à la bonne mise en place du réseau astrocytaire. Les astrocytes et les cellules de Müller sont les cellules macrogliales qui servent de soutien physique et métabolique à la rétine. De plus, les cellules de Müller participent au métabolisme des lipides. L’objectif de ce travail de thèse a été d’évaluer l’implication des plasmalogènes dans le métabolisme des cellules de Müller et des astrocytes mais aussi dans la communication entre ces cellules macrogliales. Nous avons également étudié le profil lipidique d’enfants prématurés pour mettre en évidence de potentielles altérations du métabolisme des plasmalogènes chez des nouveau-nés développant une rétinopathie à composante vasculaire, la rétinopathie du prématuré (ROP). Pour ce faire nous avons étudié les effets d’une diminution en plasmalogènes et/ou en iPLA2 sur des cellules de Müller en culture primaire après avoir préalablement vérifié l’expression de l’enzyme clef de la biosynthèse des plasmalogènes. Nous avons ensuite étudié les effets d’une diminution des teneurs en plasmalogènes sur la communication calcique entre les cellules de Müller et les astrocytes. Nos résultats ont montré que les cellules de Müller expriment l’enzyme-clé de synthèse des plasmalogènes et que ces cellules sont plus riches en plasmalogènes que la rétine entière. Les plasmalogènes seraient impliqués dans le contrôle de la migration des cellules de Müller par l’action de la voie ERK1/2 MAPK. Ces effets ne semblent pas passer par la libération des AGPI. De plus nos résultats suggèrent une dégradation de la communication entre les astrocytes et les cellules de Müller en cas de diminution des teneurs en plasmalogènes dans les cellules de Müller. Enfin chez l’homme nous avons mis en évidence une accumulation des AGPI n-6 au détriment des AGPI n-3 dans les érythrocytes des enfants développant une rétinopathie du prématuré et inversement dans le groupe d’enfants prématuré contrôle. L’ensemble de ces travaux confirme l’importance du métabolisme lipidique, et plus particulièrement celui des plasmalogènes, sur le fonctionnement de la rétine. / Retinal vascular disorders such as retinopathy of prematurity (ROP), diabetic retinopathy or age-related macular degeneration represent the first cause of vision loss at all ages in industrialized countries. Many epidemiological or animal studies have shown the involvement of polyunsaturated fatty acids (PUFA) in the regulation of vascular development and more specifically the beneficial properties of omega 3 PUFA (n-3 PUFA) against pathological vascularization. Those PUFA are esterified on glycerophospholipids (GP). GP are the primary constituents of the lipid bilayer of cell membranes. PUFA can be also esterified on a specific class of GP, called plasmalogens. Plasmalogens are characterized by the presence of a vinyl ether linkage at the sn-1 position of glycerol instead of an ester linkage as seen in other GP. PUFA are released from plasmalogens by a calcium-independent phospholipase (iPLA2). Free PUFA can be converted into biologically active metabolites. Plasmalogens may have an impact on the development and the maturation of retinal vascular network through the PUFA they release through the control of astrocyte template formation prior to vessel formation. Astrocytes and Müller cells are macroglials cells providing physical and metabolic supports to the retina. Müller cells are key actors of the retinal lipid metabolism. The aim of this work was to evaluate the involvement of plasmalogens in Müller cells and astrocytes metabolism as well as in the ability of these cells to communicate. On one hand, we have studied the effects of a decrease in plasmalogen biosynthesis and/or in iPLA2 activity on Müller cell physiology. Müller cells express a biosynthesis key enzyme of plasmalogen and reducing the biosynthesis of plasmalogens affects Müller cell ability to migrate through the ERK1/2 MAPK signalling. In a second series of studies, we studied the repercussions of such modifications on Müller cell physiology on their ability to communicate with retinal astrocytes through calcium signalling. Our results suggest that affecting plasmalogen metabolism in Müller cells alters the communication between astrocytes and Müller cells. Finally, and in order to investigate whether plasmalogen metabolism may be modified in a human disease displaying abnormal retinal vascular development, we performed a lipidomic study of circulating lipids in infants affected by retinopathy of prematurity. ROP was characterized by the accumulation of n-6 PUFA at the expense of n-3 PUFA, these changes being associated to plasmalogens. All these experiments confirm the importance of lipid metabolism, and especially plasmalogens, on the retina functioning.
4

Lipid class and phospholipid species composition associated with life history variation in north temperate and neotropical birds

Calhoon, Elisabeth A. 08 June 2016 (has links)
No description available.
5

Métabolisme des plasmalogènes dans les tissus nerveux : implication dans le développement vasculaire rétinien par l'intermédiaire de la phospholipase A2 indépendante du calcium (iPLA2) / Metabolism of plasmalogens in neuronal tissues : involvment in retinal vascular development through calcium independant phospholipase A2 (iPLA2)

Saab, Sara 09 July 2013 (has links)
Les complications vasculaires rétiniennes constituent des évènements qui peuvent être observés au cours de rétinopathies pouvant être à l’origine d’une cécité à tous les stades de la vie. Ces complications concernent particulièrement la rétinopathie du prématuré, la rétinopathie diabétique et la dégénérescence maculaire liée à l’âge. Les lipides offrent de nombreuses possibilités pour prévenir et éventuellement freiner le développement de ces rétinopathies. Parmi eux, la classe des plasmalogènes est particulièrement riche en acides gras poly-insaturés (AGPI), qui sont libérés par une phospholipase indépendante du calcium (iPLA2) et qui sont précurseurs de métabolites biologiquement actifs. Certains de ces métabolites sont connus pour être impliqués dans la modulation de l’angiogenèse rétinienne. L’objectif de ce travail de thèse a été d’évaluer l’implication des plasmalogènes dans le développement vasculaire rétinien par l’intermédiaire de la libération des AGPI par la iPLA2. Pour vérifier cette hypothèse, nous avons caractérisé les évènements cellulaires et moléculaires du développement vasculaire rétinien postnatal chez un modèle animal d’inhibition de la iPLA2 rétinienne que nous avons préalablement développé, ceci de manière comparative avec un modèle de déficience totale en plasmalogènes. Nous avons également tenté de mettre en évidence de potentielles altérations du métabolisme des plasmalogènes chez au cours d’une rétinopathie à composante vasculaire chez l’homme, la rétinopathie diabétique. Nos résultats ont suggéré que les plasmalogènes sont indispensables pour le développement physiologique des vaisseaux rétiniens. Ils seraient impliqués dans le contrôle de la formation de la trame astrocytaire et la mise en place du réseau endothélial par l’intermédiaire des AGPI libérés par la iPLA2. Les mécanismes moléculaires impliqueraient la voie des Angiopoïétines-Tie sans affecter celle du VEGF. Chez l’homme, nous avons noté une réduction des AGPI circulants, en particulier l’acide docosaexanéïque et l’acide arachidonique, sur les phosphatidyl-éthanolamines chez tous les patients diabétiques avec ou sans rétinopathie diabétique, sans implication des formes plasmalogènes. Nos résultats suggèrent une implication du métabolisme des plasmalogènes dans le contrôle du développement vasculaire en période péri-natale mais pas au cours de la rétinopathie diabétique. Ce contrôle serait exercé par l’intermédiaire des AGPI libérés par la iPLA2. / Retinal vascular complications are secondary events of several retinopathies that result in blindness at all ages. Such complications can be observed in retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. Lipids, and particularly polyunsaturated fatty acids (PUFAs), display beneficial properties in the prevention of such retinopathies. Among the different lipid classes, the plasmalogen subclass is particularly interesting since it is known to be rich in PUFAs. These PUFAs are known to be released by a calcium-independent phospholipase (iPLA2) and further converted into biologically active metabolites. Some of these metabolites are known to be involved in the modulation of retinal angiogenesis. The aim of this work was to evaluate the involvement of plasmalogens in retinal vascular development through PUFA release by iPLA2. To check this hypothesis, we have comparatively characterized cellular and molecular mechanisms of postnatal retinal vascular development in an animal model of retinal iPLA2 inhibition as well as in a model of plasmalogens deficiency. On the other hand, we have attempted to identify potential alterations in plasmalogen metabolism in diabetic retinopathy. Our results suggest that plasmalogens are essential for the physiological development of retinal vessels. They are involved in the control of astrocyte template formation and the development of the primary vascular network through PUFA released by iPLA2. Molecular mechanisms by which PUFAs from plasmalogens control retinal vascular development involve Angiopoietin-Tie pathways, without affecting those involving VEGF. In the human study, we have observed a decrease in the bioavailability of circulating PUFAs, and especially docosaexaneic acid and arachidonic acid binded to phosphatidyl-ethanolamine in all diabetic patients with or without diabetic retinopathy. Plasmalogens were not involved in these modifications. Our results suggest that plasmalogen metabolism is involved in the control of primary vascular growth during retinal development but not in diabetic retinopathy. Plasmalogens may control early steps of retinal vascular development through the release of PUFAs by iPLA2.
6

Stimulation of Microbial Protein Synthesis by Branched-Chain Volatile Fatty Acids in Dual Flow Cultures Varying in Forage and Polyunsaturated Fatty Acid Concentrations

Mitchell, Kelly Elizabeth January 2022 (has links)
No description available.

Page generated in 0.0331 seconds