• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 25
  • 5
  • Tagged with
  • 81
  • 81
  • 45
  • 35
  • 33
  • 33
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation macro et micro-macro des matériaux polycristallins endommageables avec compressibilité induite

Boudifa, Mohamed 01 March 2006 (has links) (PDF)
Ce travail est dédié à la prise en compte d'une compressibilité plastique induite par l'endommagement ductile dans les matériaux métalliques pour des applications en simulation des procédés de mise en forme. Dans le cadre de la mécanique de l'endommagement continu (MEC), nous généralisons deux modèles existants afin d'y introduire une variation de volumique induite par l'endommagement. Le premier modèle, de nature macroscopique, utilise deux variables d'endommagement, dont une gouvernée par le comportement hydrostatique. Le deuxième de nature micro-macro introduit un critère d'écoulement endommageable à l'échelle des systèmes de glissement cristallin (plasticité cristalline). Ce critère combine les effets de la contrainte de cisaillement et de la contrainte normale pour tenir compte de la variation de volume induite. <br />Ces deux modèles ont été implémentés dans le code Zébulon avec un schéma d'intégration local implicite (prédiction élastique retour radial) et explicite (Runge-Kutta). <br />La validation de ces modèles a été réalisée avec des simulations numériques par la MEF sur des exemples simples (essai de traction) et concernent l'étude des étapes des phénomènes de localisation (diffuse, striction, et modes de rupture finale) en comparaison avec un modèle de type Gurson. Quelques applications de procédés de mise en forme (poinçonnage et emboutissage) ont suivis pour les deux familles de modèles.
32

Modélisation de la plasticité cristalline et de la migration des joints de grains de l'acier 304L à l'échelle mésoscopique / Modelling of crystal plasticity and grain boundary migration of 304L steel at the mesoscopic scale

Cruz Fabiano, Ana Laura 10 December 2013 (has links)
Les propriétés des matériaux métalliques sont très liées à leurs caractéristiques microstructurales. Par exemple il est bien connu que la taille de grains joue sur la limite élastique du matériau ainsi que sur ses capacités d'écrouissage. Ainsi, la compréhension et la modélisation de l'évolution de la microstructure d'un métal pendant un traitement thermomécanique est d'une importance primordiale afin de prédire finement son comportement ainsi que ses propriétés finales. Dans le cadre de cette thèse, nous nous sommes concentrés sur la modélisation, à l'échelle d'un agrégat polycristallin, de la plasticité cristalline, de la recristallisation statique et de la croissance des grains dans un contexte de mobilité et d'énergie d'interface isotrope. Un modèle à champ complet dans un cadre éléments finis (EF) est proposé. Les grains sont représentés grâce à un formalisme level-set. L'étude EF développée peut être divisée en trois grandes parties: la génération statistique de microstructures digitales, la modélisation de la plasticité cristalline et la modélisation de la migration des joins de grains en régime de recristallisation statique. Concernant la génération statistique des microstructures digitales, une étude comparative entre deux méthodes de génération (Voronoï et Laguerre-Voronoï) a été réalisée. La capacité de la deuxième approche à respecter une microstructure basée sur des données expérimentales est mise en valeur en 2D et en 3D. Dans une deuxième étape, la plasticité cristalline des matériaux métalliques est étudiée. Deux modèles d'écrouissage ont été implémentés et validés : un premier modèle considérant uniquement les densités de dislocations totales, et un deuxième modèle différenciant les dislocations statistiquement stockées (SSDs) des dislocations géométriquement nécessaires (GNDs). Afin de valider l'implémentation de ces deux modèles issus de la littérature deux cas ont été étudiés : le premier correspond à l'étude à chaud d'un essai de compression plane d'un acier 304L, et le deuxième correspond à l'étude d'un essai à froid de compression simple d'un oligocristal de tantale composé de 6 grains. Les résultats numériques obtenus sont comparés avec les données expérimentales des deux essais. La migration des joints de grains est étudiée dans le contexte des régimes de recristallisation statique et de croissance de grains. Par rapport aux travaux pre-existants dans un cadre level-set, l'accent est mis sur la prise en compte des forces capillaires. La croissance des grains pure est en effet développée dans le formalisme éléments finis/level set considéré, et des validations à partir de résultats analytiques connus sont présentées. De plus, un travail d'analyse de modèles de croissance des grains à champ moyen existant dans la littérature est réalisé. Deux modèles en particuliers sont étudiés : celui de Burke et Turnbull et celui de Hillert/Abbruzzese. En comparant ces modèles avec les résultats obtenus par l'approche en champ complet développée, il est mis en évidence que le modèle simple de Burke et Turnbull n'est pas approprié pour décrire la croissance de grains pour tout type de distribution initiale de taille de grains. La recristallisation statique est ensuite abordée, avec une prise en compte des deux forces motrices liées (i) aux gradients d'énergies stockées sous la forme de dislocations, et (ii) aux effets capillaires. L'influence des effets de capillarité apparaît comme fortement liée à la distribution spatiale des nouveaux germes. Finalement, les résultats des simulations réalisées en plasticité cristalline sont utilisés comme données d'entrée du modèle de recristallisation statique développé. La comparaison des prédictions obtenues comparativement aux résultats expérimentaux sur 304L permet d'illustrer la pertinence d'une approche de type SSD/GND afin de prédire les sites de germination potentiels. / Mechanical and functional properties of metals are strongly related to their microstructures, which are themselves inherited from thermal and mechanical processing. For example, the material grain size distribution plays an important role on the material yield limit and work hardening. The understanding of these microstructure evolutions during thermo-mechanical processes is of prime importance for a better prediction and control of the material mechanical properties. During this Ph.D., we have worked on the modelling of crystal plasticity, static recrystallization and grain growth at the mesoscopic scale in the context of isotropic mobility and interface energy. The full field model developed is based on a finite element formulation combined with a level set framework used to describe the granular structure. This Ph.D. thesis is divided in three main parts: statistical generation of digital microstructures, crystal plasticity modelling and grain boundary migration modelling. In what concerns the digital microstructures statistical generation, a comparative study between two methods (Voronoï and Laguerre-Voronoï) is presented. The ability of the second approach to respect a given grain size distribution is highlighted in 2D and 3D. Secondly, the metallic materials crystal plasticity is studied. Two hardening laws have been implemented and validated: the first one considering the total dislocation density and a second one that differentiates the statistically stored dislocations (SSD) from geometrically necessary dislocations (GNDs). Two different tests cases are used in order to validate the implementation of both hardening laws in the considered crystal plasticity model. The first one corresponds to a planar hot compression test (channel die test) on a 304L stainless steel whereas the second one corresponds to a simple cold compression test on a tantalum olygocrystal composed by six different grains. The obtained results are compared to experimental data for both cases. Grain boundary migration is studied for static recrystallization and grain growth phenomena. Compared to previous work in the considered level-set framework, the focus is on the consideration of capillary forces. Indeed pure grain growth is developed in the considered finite elements/level set formalism and this algorithm is validated using well-known analytical results. Moreover, the results of the developed full field grain growth model are compared in 2D with several well-known mean field grain growth models (Burke and Turbull model and Hillert/Abbruzzese model). The results obtained illustrate that only the Hillert/Abbruzzese model accurately describes grain growth kinetics for all initial grain size distributions. The validity of the Burke and Turnbull model is, on the contrary, restricted to specific distributions. Static recrystallization is then discussed considering both driving forces: (i) internal energy gradient and (ii) grain boundaries capillarity effects. The influence of capillary effects appears to be strongly related to the spatial distribution of the new grains. Finally, the crystal plasticity numerical results are used as input data of the developed static recrystallization full field model. The comparison of the numerical predictions obtained with 304L experimental results allows illustrating the relevance of the SSDs/GNDs formalism used concerning the prediction of the nuclei potential position.
33

Caractérisation et identification du comportement thermomécanique de multi-cristaux d’aluminium / Characterization and identification of the thermomechanical behavior of multi-crystal aluminum

Li, Li 12 December 2014 (has links)
L'objectif ultime de ce travail de thèse consiste à établir un bilan énergétique à l'échelle du grain afin de caractériser et de vérifier la cohérence thermodynamique de modèles de comportement utilisés pour rendre compte du développement de la plasticité cristalline dans les matériaux métalliques. La première partie de ce travail a consisté à mettre en place un protocole d'élaboration du matériau permettant d'obtenir la microstructure souhaitée, compatible avec des moyens d'observations macroscopiques. Les échantillons d'aluminium à très gros grains (centimétriques) ainsi obtenus sont utilisés pour effectuer des essais cycliques durant lesquels les champs cinématiques et thermiques sont mesurés au moyen de techniques de Corrélation d'Images Numériques et de Thermographie Infra-rouge. Deux techniques de traitement d'image spécifiques ont été proposées. Elles permettent d'introduire des hypothèses sur les champs cinématiques et thermiques qui soient adaptées à la microstructure (ici continuité intra-granulaire du déplacement, de la température et du flux). Ces méthodes permettent d'accéder à des mesures complètement indépendantes d'un grain à l'autre tout en améliorant la robustesse des méthodes de mesure. Ces méthodes ont été validées numériquement en utilisant des images de synthèse sur lesquelles ont été appliqués des champs hétérogènes. Une campagne d'essais cycliques a enfin été menée sur les multi-cristaux d'aluminium élaborés. Les méthodes développées ont permis d'observer le développement de la plasticité intra-granulaire et le développement de la fissuration inter-granulaire. / The main objective of this PhD thesis is to establish an energy balance at the grain scale in order to assess the thermomechanical consistency of material models used to predict the development of crystal plasticity of metals.The first part of this work consists in setting a protocol allowing the material elaboration with the desired microstructure which is to be compatible with the use of classical macroscopic observation devices. The obtained coarse-grained aluminum samples (with centimeter grains) are used in cyclic tensile tests. During these tests, the kinematic and thermal fields are recorded with Digital Image Correlation and Infra-Red Thermography techniques.Two specific imaging techniques were developed. They allow introducing ad hoc hypotheses (i.e. consistent with microstructure) on the kinematic and the thermal fields. In this work, these hypotheses consist in intra-granular continuity conditions on the displacement, temperature and heat flux fields. These methods give independent measures on each grain while improving the robustness of the measurement methods. These methods were numerically validated using computer-generated images heterogeneously loaded.Cyclic tests were finally performed on the processed aluminum multi-crystals. The developed methods allowed the observation of the development of intra-granular plasticity and the development of inter-granular cracking.
34

Etudes expérimentale et numérique du comportement mécanique d'un composite métal – céramique : MoTiC30%

Cédat, Denis 17 November 2008 (has links) (PDF)
Dans le cadre du développement des réacteurs de génération IV, de nouvelles études sont menées dans le domaine des matériaux. L'objectif de ce travail est d'améliorer la compréhension du comportement mécanique et de l'endommagement de composites à matrice métallique Mo(TiC)x% contenant une forte fraction volumique de particules, et cela, dans le domaine de températures [25 – 700 °C].<br /><br />La caractérisation microstructurale a permis de comprendre l'histoire du matériau et d'identifier la nature d'une troisième phase (Mo,Ti)C fomée par diffusion du molybdène dans le carbure de titane. L'étude expérimentale a aussi révélé la percolation des particules céramiques au sein de la structure.<br />Les essais mécaniques ont mis en évidence les principales caractéristiques du matériau : le comportement macroscopique dépend à la fois de la vitesse de déformation et de la température. Ces mécanismes sont attribués au comportement thermiquement activé du molybdène.<br /><br />Nous proposons alors diverses simulations de microstructures comprenant des inclusions élastiques-fragiles dans une matrice viscoélastique. L'évolution du comportement mécanique du composite a été modélisée à l'aide d'une approche cristalline sur un agrégat 3D réel. L'agrégat numérique utilisé pour modéliser le comportement mécanique fait appel à une technique de reconstruction 3D via une acquisition par FIB/SEM/EBSD.<br /><br />Ainsi, la réponse du modèle est en bon accord avec les résultats expérimentaux et permet de décrire en fonction de la température :<br />- les mécanismes de plasticité du molybdène, en tenant compte de la transition basse/haute température ;<br />- l'endommagement du carbure de titane et les effets de la percolation.
35

Etude numérique de la plasticité d'agrégats polycristallins

Barbe, Fabrice 22 December 2000 (has links) (PDF)
Cette étude a été effectuée à la suite du développement de lois et d'outils applicables à la modélisation numérique du comportement élastoviscoplastique de matériaux cristallins : des lois de comportement de monocristaux, des lois de transition d'échelle pour les modèles d'homogénéisation, un code de calcul Eléments Finis adapté au calcul parallèle et un programme de génération de microstructures polycristallines 3D. Disposant de ces éléments, nous avons étudié le comportement de polycristaux 3D en petites déformations, aux échelles macroscopique, intergranulaire et intragranulaire.<br />Le milieu polycristallin est décrit par des polyèdres de Voronoï, donnés sous la forme d'un fichier de voxels (L. Decker, D. Jeulin, ENSMP). L'implémentation de la méthode FETI dans le code EF ZéBuLoN (F. Feyel, S. Quilici, ENSMP-ONERA) permet la résolution en parallèle de problèmes à très grand nombre de degrés de liberté. Ainsi nous avons accès à un nombre illimité de réalisations de microstructures et nous pouvons faire figurer suffisamment d'éléments dans un maillage pour que soit possible la description des champs intragranulaires dans un polycristal 3D.<br />Pour commencer nous montrons les spécificités de notre approche par rapport aux travaux de modélisation de la plasticité cristalline. La première partie de l'exploitation des outils a consisté à analyser la sensibilité des résultats aux données de la modélisation (nombre d'éléments, nombre de grains, réalisation de microstructure . . . ) afin d'établir une configuration de calcul valable pour des simulations sur un Volume Elémentaire Représentatif de polycristal isotrope. En seconde partie nous mettons en évidence l'hétérogénéité de comportement inter- et intragranulaire et l'apport de la méthode par rapport à une démarche autocohérente. Ceci est complété par une analyse de l'influence des joints de grain et des conditions aux limites sur la réponse d'un essai en traction simple, aux différentes échelles de la modélisation. Nous caractérisons ainsi un effet local et un effet moyen pour tous les grains, en fonction de la distance à un joint ou à un bord. En annexe sont donnés les résultats de simulations obtenus avec un modèle non-local des milieux de Cosserat (S. Forest, ENSMP) qui ont permis de quantifier un effet de taille de grain sur le comportement effectif de polycristaux.
36

Étude de la rugosité de surface induite par la déformation plastique de tôles minces en alliage d'aluminium AA6016

Guillotin, Alban 28 May 2010 (has links) (PDF)
Dans le cadre d'un programme de recherche visant à l'allègement de la structure des véhicules, l'origine de lignage dans des tôles en aluminium AA6016 a été étudiée. Ce phénomène, qui peut apparaître à la suite d'une déformation plastique, est apparenté à de la rugosité de surface alignée dans la direction de laminage (DL). Sa présence est néfaste à une bonne finition de surface, et son intensité est appréciée visuellement par les fabricants.Une méthode de quantification rationnelle a été développée. La caractérisation de la distribution morphologique des motifs de rugosité a été rendue possible par l'utilisation de fonctions fréquentielles telle la densité de puissance spectrale. La note globale, construite à partir de la quantification individuelle des composantes de lignage pur et de rugosité globulaire, s'est montrée en bon accord avec les estimations visuelles, et notamment avec le niveau de lignage intermédiaire regroupant plusieurs aspects de surface différents.La microstructure des matériaux à l'état T4 a été expérimentalement mesurée couche de grains par couche de grain à l'aide d'un couplage entre polissage contrôle et acquisition par EBSD. Les 4 à 5 premières couches sous la surface (-120μm) semblent jouer un rôle mécanique prépondérant dans la formation du lignage car elles offrent à la fois une grande taille de grains moyenne, une importante ségrégation d'orientations cristallines, et une forte similitude de longueurs d'onde entre la rugosité de surface et les motifs de la microtexture.Des simulations numériques ont permis de vérifier que les couples de texture identifiés (Cube/Goss, Cube/Aléatoire et Cube/CT18DN) possédaient des différences d'amincissements hors-plans suffisantes pour générer l'ondulation d'une couche d'éléments. En revanche, l'influence mécanique de cette même couche décroit très rapidement avec son enfouissement dans la profondeur et devient négligeable sous plus de 4 couches d'éléments.
37

Modélisation par éléments finis des hétérogénéités à l'échelle granulaire au sein d'agrégats polycristallins

Resk, Héba 03 December 2010 (has links) (PDF)
Les matériaux cristallins, notamment métalliques, sont des matériaux hétérogènes. Leurs propriétés macroscopiques sont fondamentalement déterminées par leurs caractéristiques microstructurales. L'étude des mécanismes opérant à l'échelle du grain permet de mieux comprendre et mieux contrôler les caractéristiques des pièces fabriquées afin de réduire leur coût et optimiser leur performance. Cette thèse s'inscrit dans le cadre de la méthode dite "CPFEM'' qui couple la plasticité cristalline à la méthode des Eléments finis (EF). L'objectif de ce travail est d'étudier les hétérogénéités à l'échelle du grain au sein d'agrégats polycristallins soumis à de grandes déformations. Pour ce faire, une représentation explicite de la microstructure est nécessaire. Le travail réalisé, ainsi que ce manuscrit, s'articule autour de deux axes principaux: i) la mise en place d'un cadre numérique robuste adapté à des calculs de microstructure intensifs en grandes déformations; ii) la validation de ce cadre à travers différents cas tests, qui permettent, notamment, d'étudier les hétérogénéités locales. Dans le chapitre 2, le comportement du matériau est modélisé par une loi élastoviscoplastique cristalline, qui ne prend cependant pas en compte le développement d'une sous-structure dans sa formulation. Cette loi est couplée à une formulation EF mixte en vitesse pression. L'approche EF, détaillée dans le chapitre 3, peut être considérée comme le modèle polycristallin idéal vu le respect, au sens numérique faible, de l'équilibre des contraintes et la compatibilité des déformations. Dans le chapitre 4, l'approche utilisée pour construire, représenter et discrétiser un volume polycristallin est détaillée. La microstructure est représentée, soit par des polyèdres de Voronoi, soit par des voxels, si elle est construite à partir de données expérimentales. L'agrégat polycristallin est discrétisé avec une approche "monolithique'', où un seul maillage, non structuré et non-conforme aux interfaces entre les grains, est utilisé. Une approche level set permet alors de décrire l'interface entre les grains de façon implicite et sert de base pour la construction d'un maillage adaptatif anisotrope. Le remaillage, avec un transport approprié des variables du problème, se fait de façon naturelle et automatique si la carte de métrique, associée au maillage, est calculée avant la procédure de remaillage. Dans le chapitre 5, les hétérogénéités inter- et intragranulaire sont appréhendées à travers une étude de la distribution d'une fraction de l'énergie de déformation. Cette fraction est considérée, dans une première approche, comme étant représentative de l'énergie stockée durant la déformation. Une analyse de sensibilité, au degré et au type de maillage utilisé, permet de mettre en évidence l'apport d'une stratégie de maillage anisotrope. Ces données locales sont particulièrement importantes à calculer lors de la déformation d'agrégats polycrystallins si l'objectif est de modéliser le phénomène de recristallisation statique qui suit l'étape de déformation. Un cas test 3D permet d'illustrer le chaînage de la simulation de la déformation et de la recristallisation, toutes deux réalisées dans le même cadre numérique. Dans le chapitre 6, notre approche numérique est, dans un premier temps, validée à l'aide d'un cas test de laminage pour un polycrystal statistiquement représentatif d'une texture expérimentale. Une réduction d'épaisseur de plus de 90 % est réalisée. Le remaillage, dans ce type d'application, s'avère plus que nécessaire. Dans la seconde partie de ce chapitre, une étude approfondie de la microtexture, développée au sein de microstructures virtuelles, est effectuée. Dans ce cas, ces microstructures "digitales'' correspondent à une microstructure réelle dans un sens discret. Les prédictions de désorientations, d'orientations cristallographiques moyennes ainsi que les cartes d'orientation 2D virtuelles, sont comparés à l'expérience à l'échelle de chaque grain, mettant ainsi en évidence les facteurs à l'origine de certaines des différences observées.
38

Durcissement des superalliages monocristallins : des mécanismes physiques à la modélisation continue

Vattre, Aurélien 17 December 2009 (has links) (PDF)
Ce présent travail s'inscrit dans le cadre de la modélisation multi-échelles de la plasticité cristalline des superalliages monocristallins à base nickel. Dans ce contexte, une transition d'informations recueillies à l'échelle mésoscopique justifiant physiquement un modèle micromécanique est mise en évidence. Un couplage entre une simulation par dynamique des dislocations et la méthode des éléments finis, le Modèle Discret-Continu (MDC) est utilisé afin de reproduire les interactions entre dislocations et précipités. Une première application a pour objet de décrire des effets d'échelle induits par une variation de la largeur du couloir de matrice sur les propriétés mécaniques. La relation entre les microstructures simulées de dislocations, la contrainte d'écoulement et la déformation plastique est appréhendée. Une seconde étude traite l'influence de l'orientation du chargement sur le comportement mécanique du superalliage. Les interactions entre les systèmes primaires et déviés sont discutées et leur rôle majeur dans la localisation de la déformation plastique dans les couloirs de matrice est démontré. Par ailleurs, l'écrantage des interactions élastiques à longues portées associées aux réseaux de dislocations d'interface explique l'origine du faible taux d'écrouissage observé pour des essais orientés <111> à hautes températures. Fortes des interprétations faites à l'échelle des dislocations, deux modélisations de nature très différentes sont développées. Une première évoque dans sa formulation une loi de durcissement dictée par une densité de dislocations géométriquement nécessaires. La formation et l'évolution des microstructures de dislocations sont étudiées : la comparaison avec les résultats obtenus avec le MDC montre les faiblesses de cette approche continue. On justifie ainsi le développement d'un second modèle micromécanique par homogénéisation, pour lequel la réponse globale du matériau est déterminée en considérant les rôles de la microstructure et des interactions mécaniques entre constituants. Dans ce modèle, les mécanismes locaux sont décrits de manière physique et les lois d'écrouissage sont écrites en termes de densités de dislocations mobiles. Il a été identifié à 850 et 950°C, et validé avec succès sur le superalliage CMSX-4 monocristallin.
39

Modélisation de la fragilisation due au gonflement dans les aciers inoxydables austénitiques irradiés

Han, Xu 14 December 2012 (has links) (PDF)
Au cours d'une irradiation neutronique à long-terme dans les Réacteurs à Eau Pressurisée (REPs), une modification importante du comportement mécanique des matériaux utilisés dans les internes de cuve (composés des aciers inoxydables austénitiques de la série 300) est observée, y compris un durcissement et un adoucissement induit par irradiation, une perte de la ductilité et de la ténacité. Jusqu'à présent, beaucoup efforts ont été contribués pour identifier les effets d'irradiation sur l'évolution microstructurale du matériau (dislocations, boucles de Frank, cavités, ségrégation, etc.). Le gonflement induit par irradiation, considéré comme un facteur limitant la durée de fonctionnement des réacteurs, pourrait modifier les propriétés mécaniques des matériaux (plasticité, ténacité, etc), même conduire à une distorsion des structures du fait des modifications dimensionnelles entre les différentes composantes.L'objectif principal de ce travail de thèse est d'étudier qualitativement l'influence de l'effet du gonflement sur le comportement mécanique des matériaux irradiés. Un modèle micromécanique constitutif en grandes déformations basé sur les évolutions de la densité de dislocations et de défauts d'irradiation (boucles de Frank) est développé et implémenté dans les codes de calcul éléments finis ZéBuLoN et Cast3M. Les simulations numériques sont réalisées pour calculer les propriétés mécaniques d'un agrégat polycristallin. Par ailleurs, la technique d'homogénéisation est appliquée pour développer un modèle de type Gurson. Les simulations d'une cellule poreuse sont utilisés pour étudier le comportement mécanique des monocristaux poreux, en tenant compte des différents effets de la triaxialité, de la porosité et de l'orientation cristallographique, afin d'étudier l'effet de la présence des cavités sur la plasticité et la rugosité du matériau irradié à l'échelle polycristallin.
40

Modélisations physiques et micromécaniques du comportement des matériaux hétérogènes : prise en compte de la topologie et des efets du temps (viscosité et vieillissement)

Favier, Véronique 29 June 2005 (has links) (PDF)
Les industries productrices de matériaux, que ce soit dans le domaine des polymères ou celui des métaux, conçoivent de nouveaux matériaux pour répondre à des fonctions spécifiques définies par leurs clients. Elles s'appuient sur les progrès spectaculaires des dernières années dans le domaine de la modélisation des procédés et de la prédiction des propriétés d'emploi. Cependant, des efforts importants restent encore à faire dans la compréhension des relations entre une microstructure et ses propriétés de mise en forme et de tenue en service pour développer et inventer les matériaux de demain. Pour mieux comprendre les relations entre microstructures et propriétés mécaniques, les modèles basés sur une démarche micromécanique par changement d'échelles sont très utiles par leur caractère prédictif étendu. Comment représenter au mieux cette microstructure ? Quel est le rôle de la topologie, c'est-à-dire de la morphologie et l'arrangement spatial des constituants ? Quel est le rôle du comportement propre de chaque constituant sur la réponse du matériau ? Ces questions sont au centre de mes activités de recherche. Ma contribution porte plus particulièrement sur le développement de modèles micromécaniques par changement d'échelles dans deux domaines ouverts : le couplage entre des mécanismes instantanés et dépendants du temps tels que l'élasticité et la viscoplasticité et la prise en compte de la topologie dans les matériaux hétérogènes à fort contraste mécanique.<br /><br />Dans le cas d'un fort contraste mécanique, l'arrangement des phases joue un rôle du premier ordre sur les propriétés mécaniques. Il induit en particulier que seule une fraction des phases, appelée fraction effective, est active mécaniquement. Cela amène à définir des «phases mécaniques» qui (i) ne sont pas forcément définies par une homogénéité chimique ou physique et (ii) peuvent évoluer avec les conditions de chargements. On parle alors de « motif morphologique évolutif ». Le modèle autocohérent appliqué au motif morphologique de l'inclusion enrobée a été appliqué avec succès aux semi-solides où inclusion et enrobage sont tous deux composés de liquide et de solide. Il a été implanté dans un code d'éléments finis afin de simuler la mise en forme d'alliages métalliques à l'état semi-solide et en particulier le thixoforgeage en collaboration avec ASCOMETAL CREAS.<br /><br />En ce qui concerne le couplage entre des déformations élastiques instantanés et des déformations viscoplastiques dépendants du temps, un modèle de transition d'échelle, dit modèle à champs translatés, est proposé en s'inspirant de l'approximation autocohérente. Il fournit une description élastique-viscoplastique des interactions entre hétérogénéités efficace et simple à mettre en œuvre numériquement. Cet outil de transition d'échelle a été appliqué à l'étude du comportement élastique-viscoplastique d'aciers polycristallins présentant différentes microstructures en collaboration avec ARCELOR. Les lois décrivant le comportement du monocristal fondées sur la théorie de la plasticité cristalline, prenant en compte les mécanismes de déformation par glissement cristallographique et éventuellement par maclage, ont été adaptées et enrichies aux types de comportement étudiés : dépendants de la vitesse de déformation, de la température, sous sollicitations monotones ou cycliques, après vieillissement de type Bake Hardening.<br /><br />La démarche de modélisation proposée jusqu'alors décrit l'activité plastique à l'aide de variables internes homogènes à l'échelle du grain. Or la plasticité apparaît selon des événements spatio-temporels discrets. Un nouveau projet de recherche est proposé pour lever cette hypothèse de « microhomogénéité » en représentant l'activité plastique par une distribution spatiale mais périodique de « particules » de déformation. Cette approche cherche à prendre en compte l'auto-organisation spatiale de la microstructure dans les calculs de champs dans le but de rendre compte naturellement des effets de taille en plasticité.

Page generated in 0.0919 seconds