• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 17
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 226
  • 226
  • 58
  • 46
  • 46
  • 34
  • 31
  • 31
  • 28
  • 27
  • 26
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Characterization and Implementation of Screen-Printed, Flexible PTC Heaters for Portable Diagnostic Testing

Riley J Brown (15348913) 26 April 2023 (has links)
<p>The 2020 pandemic emphasized the need for accessible and accurate point-of-care diagnostic tests. With the continued development of isothermal nucleic acid amplification tests, this can be achieved. A requirement of these tests includes heating and holding a specific temperature, in this case, 65C for 30 minutes, for amplification to occur. To achieve this, heaters often require external feedback to control the temperature; bringing up the device’s cost. Several self-regulating heaters have been made with materials having a positive thermal coefficient of resistance eliminating the need for complex circuitry. With this property, point-of-care diagnostic tests can be simplified and made more accessible. In this study, ink-based positive thermal coefficient of resistance heaters are developed and characterized using the scalable method of screen printing to achieve 65C and aid in the detection of SARS-CoV-2. Various curing methods and screen-printing parameters were evaluated to improve the stability and understanding of the reproducibility of the heaters. The longevity of the heaters was evaluated with oxidation studies and a COMSOL model was created to study the heat transfer within the device. Furthermore, the heaters were successfully implemented into a second-generation electronic point-of-care diagnostic device. Detection of SARS-CoV-2 using a self-regulating heater removes the need for complex circuitry, improving the accessibility of point-of-care tests with the potential to be expanded to a wide range of pathogen detection. </p>
192

Immunoaffinity Monoliths for Multiplexed Extraction of Preterm Birth Biomarkers from Human Blood Serum in 3D Printed Microfluidic Devices

Almughamsi, Haifa Mohammad 06 August 2021 (has links)
Preterm birth (PTB) results in over 15 million early births annually and is the leading cause of neonatal deaths. There are no clinical methods currently available to evaluate risk of PTB at early stages in pregnancy; thus, a rapid diagnostic to analyze PTB risk would be beneficial. Microfluidic immunoaffinity extraction is a promising platform for preparing complex samples, such as maternal serum with PTB risk biomarkers. 3D printed microfluidic devices have advantages over conventional microfluidic systems including simple fabrication and potential for iterative optimization to improve designs. In this work, I developed immunoaffinity monoliths in 3D printed microfluidic devices modified with antibodies to enrich PTB biomarkers from human blood serum. I retained and eluted a peptide PTB biomarker in both buffer and blood serum using an immunoaffinity column. An additional three PTB biomarkers were also successfully extracted either from buffer or blood serum on single-antibody columns. Both polyclonal and monoclonal antibodies to PTB biomarkers were characterized by dot blots, biolayer interferometry, and surface plasmon resonance to determine their specificity and dissociation constants. I created multiplexed immunoaffinity columns to simultaneously enrich three PTB biomarkers from depleted human blood serum in a single extraction. This is the first demonstration of multiplexed immunoaffinity columns for PTB biomarkers in a 3D printed microfluidic device. My work is a key step towards the future development of 3D printed microfluidic devices for rapid PTB testing.
193

The Power of Mobile Health: The Girl With the Gadgets in Uganda

Onweni, Chidinma L., Venegas-Borsellino, Carla P., Treece, Jennifer, Turnbull, Marion T., Ritchie, Charles, Freeman, William D. 01 April 2021 (has links)
Medical-grade ultrasound devices are now pocket sized and can be easily transported to underserved parts of the world, allowing health care providers to have the tools to optimize diagnoses, inform management plans, and improve patient outcomes in remote locations. Other great advances in technology have recently occurred, such as artificial intelligence applied to mobile health devices and cloud computing, as augmented reality instructions make these devices more user friendly and readily applicable across health care encounters. However, broader awareness of the impact of these mobile health technologies is needed among health care providers, along with training on how to use them in valid and reproducible environments, for accurate diagnosis and treatment. This article provides a summary of a Mayo International Health Program journey to Bwindi, Uganda, with a portable mobile health unit. This article shows how point-of-care ultrasonography and other technologies can benefit remote clinical diagnosis and management in underserved areas around the world.
194

An Investigation of Poly(N-Isopropylacrylamide) for Applications with Microfluidic Paper-Based Analytical Devices

Mitchell, Haydn Thomas 01 June 2014 (has links) (PDF)
N,N′-methylenebisacrylamide-crosslinked poly(N-isopropylacrylamide), also known as P(NIPAM), was developed as a fluid delivery system for use with microfluidic paper-based analytical devices (microPADs). MicroPADs are postage-stamp-sized devices made out of paper that can be used as platforms for low-cost, simple-to-use point-of-care diagnostic assays. P(NIPAM) is a thermally responsive polymer that absorbs aqueous solutions at room temperature and will expel the solutions to microPADs when heated. The fluid delivery characteristics of P(NIPAM) were assessed, and P(NIPAM) was able to deliver multiple solutions to microPADs in specific sequences or simultaneously in a laminar-flow configuration. P(NIPAM) was then shown to be suitable for delivering four classes of reagents to microPADs: small molecules, enzymes, antibodies and DNA. P(NIPAM) successfully delivered a series of standard concentrations of glucose (0 – 5 mM) to microPADs equipped to perform a colorimetric glucose assay. The results of these tests were used to produce an external calibration curve, which in turn was used to determine accurately the concentrations of glucose in sample solutions. P(NIPAM) successfully delivered fluorescein-labeled IgG and fluorescein-labeled oligonucleotides (20 base pairs) to microPADs in a variety of concentrations. P(NIPAM) also successfully delivered horseradish peroxidase (HRP) to microPADs, and it was determined that HRP could be stored in P(NIPAM) for 35 days with minimal loss in activity. The combination of P(NIPAM) with microPADs will allow for more complex assays to be performed with minimal user input, will facilitate the preparation of external calibration curves in the field, and may be useful in extending the shelf life of microPADs by stabilizing reagents.
195

Design and development of a field deployable heating system for loop mediated isothermal amplification (LAMP) assay

Nafisa Rafiq (17593527) 11 December 2023 (has links)
<p dir="ltr">Nucleic acid testing has become a prominent method for rapid microbial detection. Unlike polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP) is a simple method of nucleic acid amplification where the reaction can be performed at a constant temperature and the output provided in a colorimetric format. A transparent water bath heater is a desirable instrument to perform the heating and observe the visual results of nucleic acid amplification. However, existing methods of heating the water are not convenient for loading and unloading the nucleic acid samples. Here, we developed a field-deployable water bath heating device—an isothermal heater called IsoHeat for short–which is solely dedicated to performing LAMP reactions and can heat the water up to 85 °C (if needed). Using 3D-printing and LASER-cutting technology, we fabricated different parts of the device and mechanically assembled the parts to develop the entire device. Users can commence the heating by pressing the start button on the screen after entering the target temperature. Subsequently, the device heats up the water bath and maintains the target temperature through a PID algorithm-based control system. We demonstrate that IsoHeat can operate in environmental temperatures ranging from 5-33 °C and it can conduct LAMP reactions in a liquid format as well as in paper-based devices. IsoHeat is more efficient and user-friendly compared to a commercially available immersion-heating device, which is often used to perform LAMP reactions. This newly developed device would be helpful to detect pathogens conveniently in the field (e.g., at the point-of-care for human applications, on farms for plant and animal applications, and in production facilities for food safety applications).</p>
196

A Sample-to-Answer Polymer Lab-on-a-Chip with Superhydrophilic Surfaces using a Spray Layer-by-Layer Nano-Assembly Method

Lee, Kang Kug January 2013 (has links)
No description available.
197

Emergency ultrasound in the prehospital setting: the impact of environment on examination outcomes

Snaith, Beverly, Hardy, Maryann L., Walker, A. January 2011 (has links)
No / This study aimed to compare ultrasound examinations performed within a land ambulance (stationary and moving) with those completed in a simulated emergency department (ED) to determine the feasibility of undertaking ultrasound examinations within the UK prehospital care environment. The findings suggest that abdominal aortic aneurysm and extended focused assessment with sonography in trauma emergency ultrasound examinations can be performed in the stationary or moving land ambulance environment to a standard consistent with those performed in the hospital ED.
198

Informatics for devices within telehealth systems for monitoring chronic diseases

Adeogun, Oluseun January 2011 (has links)
Preliminary investigation at the beginning of this research showed that informatics on point-of-care (POC) devices was limited to basic data generation and processing. This thesis is based on publications of several studies during the course of the research. The aim of the research is to model and analyse information generation and exchange in telehealth systems and to identify and analyse the capabilities of these systems in managing chronic diseases which utilise point-of-care devices. The objectives to meet the aim are as follows: (i) to review the state-of-the-art in informatics and decision support on point-of-care devices. (ii) to assess the current level of servitization of POC devices used within the home environment. (iii) to identify current models of information generation and exchange for POC devices using a telehealth perspective. (iv) to identify the capabilities of telehealth systems. (v) to evaluate key components of telehealth systems (i.e. POC devices and intermediate devices). (vi) to analyse the capabilities of telehealth systems as enablers to a healthcare policy. The literature review showed that data transfer from devices is an important part of generating information. The implication of this is that future designs of devices should have efficient ways of transferring data to minimise the errors that may be introduced through manual data entry/transfer. The full impact of a servitized model for point-of-care devices is possible within a telehealth system, since capabilities of interpreting data for the patient will be offered as a service (c.f. NHS Direct). This research helped to deduce components of telehealth systems which are important in supporting informatics and decision making for actors of the system. These included actors and devices. Telehealth systems also help facilitate the exchange of data to help decision making to be faster for all actors concerned. This research has shown that a large number of capability categories existed for the patients and health professionals. There were no capabilities related to the caregiver that had a direct impact on the patient and health professional. This was not surprising since the numbers of caregivers in current telehealth systems was low. Two types of intermediate devices were identified in telehealth systems: generic and proprietary. Patients and caregivers used both types, while health professionals only used generic devices. However, there was a higher incidence of proprietary devices used by patients. Proprietary devices possess features to support patients better thus promoting their independence in managing their chronic condition. This research developed a six-step methodology for working from government objectives to appropriate telehealth capability categories. This helped to determine objectives for which a telehealth system is suitable.
199

Laser-based technologies for targeted drug delivery and label-free diagnostics in HIV-1

Malabi, Rudzani 04 1900 (has links)
Human immunodeficiency virus type 1 (HIV-1) still causes a chronic infection that affects millions of individuals worldwide. The infection remains incurable and presents a huge challenge for treatment, as it tends to disable a patient’s immune system. Although the current HIV-1 treatment regime possesses the ability to reduce the viral load to undetectable limits, complete eradication of the virus cannot be achieved while latent HIV-1 reservoirs go unchallenged. These viral reservoirs are established early on during HIV-1 infection and are a major hurdle since they remain unaffected by antiretroviral drugs and have the ability to replenish systemic infections once treatment is interrupted. Further ailments with the highly active antiretroviral therapy (HAART) include issues such as the cumbersome lifelong treatment, development of drug resistant strains of HIV-1 and adverse side effects. Contrarily, early diagnosis of the HIV-1 infection and HIV-1 treatment is a major challenge in resource-limited countries. The current available diagnostic tools for HIV-1 infection have shown to be highly accurate in monitoring CD4+ T lymphocyte count and viral load measurements. However, these tests such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) which are highly efficient, are usually very expensive with complex operation, time consuming, require skilled personnel and training that makes them incompatible for the application in resource-limited areas. Therefore, this raises the urgent need for developing an HIV point of care (POC) diagnostic tool that is label-free, highly specific and sensitive as well as therapeutic modalities, which can be used to address the previously mentioned challenges. Much research has been conducted to resolve these problems but to date, there has not been application of laser and/or photonics in HIV research. Therefore, in this thesis a femtosecond laser was used in HIV infected cells for targeted antiretroviral drug delivery while preserving their viability. For the first time according to our knowledge, antiretrovirals (ARVs) that target all the life stages of the HIV-1 life cycle were utilized and they proved to be significant in reducing HIV-1 infection. Furthermore, through the employment of a continuous wave laser at 640 nm, for the first time, surface plasmon resonance was conducted to facilitate label-free detection of HIV-1. Success of these laser based technologies will open doors for incorporation in POC HIV diagnostic tools for the detection and treatment monitoring of HIV in resource-limited settings. / Physics / Ph. D. (Physics)
200

Développement de biocapteurs pour le diagnostic portable d’antibiotiques et de HER2

Dinel, Marie-Pier 11 1900 (has links)
No description available.

Page generated in 0.0498 seconds