Spelling suggestions: "subject:"poly(lactide)"" "subject:"poly(llactide)""
11 |
Synthèse de nouveaux polyesters "verts" issus de ressources oléagineuses : application au renfort au choc du poly(L-lactide)Lebarbe, Thomas 06 December 2013 (has links) (PDF)
Dans cette étude, plusieurs voies ont été explorées dans l'objectif d'utiliser des polyesters aliphatiques issus de ressources oléagineuses comme additifs pour le renfort au choc du poly(L-lactide) (PLLA). Dans un premier temps, des poly(ester-amide)s (PEAs) ont été synthétisés à partir de dérivés de l'huile de ricin. La relation structure-propriétés des PEAs obtenus a été clairement établie. La dispersion des PEAs (à différents taux) par extrusion à l'état fondu dans une matrice de PLLA a ensuite été effectuée, démontrant un accroissement de la résilience de ces mélanges en comparaison au PLLA seul. Une étude systématique reliant la structure d'une large gamme de polyesters aux propriétés des mélanges polyesters/PLLA, a ensuite été réalisée. Une forte dépendance de la résilience des mélanges polyesters/PLLA avec la cristallinité de l'additif polyester a été observée et quantifiée.Une amélioration des propriétés mécaniques du PLLA a également été obtenue par polymérisation par ouverture de cycle du lactide amorcée par un poly(acide ricinoléique) di-hydroxy téléchélique. Les copolymères triblocs ainsi formés ont été caractérisés d'un point de vue morphologique et mécanique.Enfin, un travail exploratoire utilisant l'ADMET comme méthode de polymérisation a été conduit, permettant la synthèse de nouveaux polymères prometteurs pour le renfort au choc du PLLA. Notamment, la copolymérisation de α,ω-diènes bio-sourcés a permis de mimer le polyéthylène basse densité linéaire, couramment employé pour le renfort au choc du PLLA.
|
12 |
Análise in vitro de um dispositivo polimérico como alternativa para o uso de antimicrobiano sistêmico em Odontologia / In vitro analysis of a polymeric device as an alternative for systemic antibiotics in DentistryTalita Girio Carnaval 15 December 2015 (has links)
A administração indiscriminada de antimicrobianos sistêmicos tem como principais efeitos indesejáveis a seleção antimicrobiana, hipersensibilidade, comprometimento gastrointestinal e toxicidade. A busca por uma alternativa à terapêutica antimicrobiana sistêmica em Odontologia através do uso de um material biodegradável de aplicação local pode apresentar inúmeras vantagens. As características estruturais, de citocompatibilidade e facilidade de fabricação do polímero sintético ácido poli-L-lactídeo (PLLA) permitem que este seja um carreador de fármacos como amoxicilina (AM), azitromicina (AZ), clindamicina (CL) ou metronidazol (ME) mantendo concentrações inibitórias constantes e por tempo prolongado, sendo capazes de prevenir a colonização dos principais patógenos orais. Objetivo: Avaliar e comparar o comportamento de filmes ou malhas de PLLA associados aos quatro antimicrobianos mais utilizados em Odontologia como uma alternativa local. Metodologia: 180 (N) discos poliméricos com 15 ou 6 mm de diâmetro foram preparados em associação a 20% do antimicrobiano amoxicilina, azitromicina, clindamicina ou metronidazol sendo classificados como grupo F (filme) e M (malha). Foram confeccionados segundo os métodos de deposição e eletrofiação (fibras) respectivamente. Todos os discos foram armazenados em solução tampão (pH 5 ou 7.4) e alíquotas foram coletadas e analisadas por cromatografia líquida de alta performace (HPLC) em 8, 24, 48, 72, 96, 120, 144 e 168 horas. As espécimes foram pesadas após 3 e 6 meses de armazenamento nas soluções tampões para análise de degradação. Para a análise de citotoxicidade, os materiais foram cultivados com fibroblastos humanos por 24h, 48h e 72h e analisados por ensaio de MTT. A capacidade antimicrobiana dos discos foi determinada em cultura de P.gingivalis e S.pyogenes. Para o controle estrutural foram realizadas fotografias digitais e MEV dos espécimes controle, das interfaces (criofratura) e das espécimes degradadas. Resultados: A liberação farmacológica para os antimicrobianos na ordem pH levemente básico (7.4) e ácido (5.0) foi respectivamente: ME 70.03% (F) e 100% (M); 88,01% (F) e 19,4% (M). Para AM 38,73% (F) e 18,63% (M); 61,44% (F) e 47,93% (M). Para AZ 32,53% (F) e 82,85% (M); 46,78% (F) e 73,15% (M). Para CL 68,42% (F) e 81,10% (M); 76,47% (F) e 72,76% (M). A análise antimicrobiana demonstrou capacidade inibitória para S.pyogenes e P.gingivalis para todos os materiais testados, não havendo diferença significativa entre filme e malha dentro de cada grupo (p>0.05). A reação de citotoxicidade por MTT comprovou que os biomateriais testados são compatíveis com fibroblastos humanos e mais citocompatíveis que o controle PLLA, controle de vida e morte (p<0.05). As malhas demonstraram favorecimento do crescimento celular principalmente em 24 e 48 horas. A MEV demonstra um filme com superfície rugosa e malha com fibras e poros mimetizando a matriz extracelular. Após criofratura a MEV da interface comprovou incorporação do fármaco ao filme e malha, exceto para o ME, com cristais externos ao polímero. Após a degradação, os filmes de amoxicilina apresentaram maior degradação que PLLA no pH 5.0 (p=0.007) e pH 7.4 (p=0.046). Já para as malhas a azitromicina apresentou maior degradação que PLLA no pH 7.4 (p=0.031). Conclusão: O PLLA é um polímero cuja associação aos antimicrobianos utilizados mostrou-se segura, citocompatível e promissora na liberação de doses inibitórias contra os microrganismos P.gingivalis e S. pyogenes. A liberação farmacológica foi influenciada pela característica química do fármaco, apresentação do polímero (filme e malha) e pH da solução de armazenamento. Este estudo comprovou ser possível através de uma terapêutica medicamentosa local controlar ou prevenir infecções localizadas, sem que seja necessário o fármaco sistêmico. / Indiscriminate administration of systemic antimicrobial has undesirable effects such as antimicrobial selection, hypersensitivity, gastrointestinal commitment and toxicity. For an alternative to systemic antimicrobial therapy in Dentistry, use a biodegradable material of local application can present numerous advantages. The structural characteristics, cytocompatibility and ease of fabrication of the synthetic polymer poly-L- lactide acid (PLLA) enable this to be a carrier biomaterial. When associated with antimicrobials as amoxicillin (AM), azithromycin (AZ), clindamycin (CL) or metronidazole (ME) it can maintain constant the inhibitory concentrations for a long time, being able to prevent colonization of the main oral pathogens. Objective: To evaluate and compare the behavior of PLLA associated with the most useful antimicrobials in Dentistry as an alternative for prevention and treatment of infections. Methodology: 180 (N) polymer discs with 15 or 6 mm diameter were prepared in association with the antimicrobial concentration of 20% amoxicillin, metronidazole, clindamycin or azithromycin being classified as Group F (film) and M (mesh). They were made using the methods of deposition and electrospinning (nanofibers) respectively. All discs were stored in buffer solutions (pH 5 or 7.4) and aliquots were collected and analyzed by high performance chromatography (HPLC) on 8, 24, 48, 72, 96, 120 , 144 and 168 hours. Cytotoxicity of human fibroblasts was tested after 24h, 48h and 72h by the MTT reaction. The antimicrobial capacity of the disks was determined against P. gingivalis and S. pyogenes cultures. The specimens were weighed after 3 and 6 months of storage for degradation analysis. Specimens were also carried out by digital photos for structural control. SEM was used to control interfaces (freeze-fracture) and degradation description. Results: The drug release for antimicrobials in order slightly basic pH (7.4) and acid ( 5.0 ) was respectively : ME 70.03 % (F ) and 100% (M ) ; 88.01 % (F) and 19.4 % ( F ) . For AM 38.73 % (F) and 18.63% ( F ) ; 61.44 % (F) and 47.93 % ( F ) . To AZ 32.53 % (F) and 82.85 % (F ) ; 46.78 % (F) and 73.15% ( F ) . Cl 68.42 % (F) and 81.10 % ( F ) ; 76.47 % (F) and 72.76 % ( F ) . Antimicrobial analysis showed inhibitory capacity against S. pyogenes and P. gingivalis for all tested polymers. ANOVA showed no difference between film and mesh within each group (p> 0.05). The MTT reaction demonstrated that the biomaterials tested are compatible with human fibroblasts (p < 0.05). The meshes have shown a tendency to cell growth especially in 24 to 48 hours. The SEM images showed a film with a rough surface and mesh of nanofibers and pores mimicking the extracellular matrix and also proved incorporation of the drug to the film and mesh after the freeze-fracture interface, except for ME that was external to the polymer crystals. Degradation showed differences among Amoxicillin-film and PLLA pH 5.0 (p = 0.007) and pH 7.4 (p = 0.046). As for the meshes differences occurred only between azithromycin and the PLLA pH 7.4 (p = 0.031). Conclusion: The PLLA is a polymer biomaterial whose association to antimicrobial is safe, biocompatible and promising. It can inhibit P. gingivalis and S. pyogenes microorganisms. The drug release was influenced by the chemical characteristics of the drug, polymer performance (mesh and film) and the pH of the storage solution. This study proved a local drug system therapy to control or prevent localized infections without systemic doses.
|
13 |
A contribution to the selection of suitable cells, scaffold and biomechanical environment for ligament tissue engineering / Une contribution à la sélection de cellules adaptés, biomatériaux et d’environments biomécaniques appropriés pour l’ingéniere tissulaire ligamentaireLiu, Xing 01 July 2019 (has links)
L'ingénierie tissulaire du ligament constitue une approche prometteuse pour réparer ou remplacer un ligament endommagé. Les trois piliers essentiels de l'ingénierie tissulaire ligamentaire sont la matrice de support (aussi appelée scaffold), la source cellulaire, ainsi que l'apport de stimulations biomécaniques/biochimiques : ces trois piliers ont été partiellement étudiés par le passé dans le but de s’orienter vers une régénération ligamentaire. Dans la présente étude, le polymère synthétique poly (L-lactide-co-ε-caprolactone) (PLCL) et la soie ont été proposés et comparés comme de potentiels candidats pour la constitution d’une matrice de support. Une série de matrices tressées multicouches à base de PLCL et de soie, ainsi qu'un nouveau composite soie/PLCL ont été développés et comparés. Les caractérisations physico-chimiques et biologiques ont démontré que le PLCL et la soie constituent des candidats pertinents, tant sur les plans mécaniques que biologiques, pour la constitution d’une matrice de support. De plus, nous avons montré que le composite soie/PLCL offrait des propriétés mécaniques et une biocompatibilité accrue par rapport aux autres matrice testées, et constituait probablement le candidat le plus approprié pour l'ingénierie tissulaire du ligament. Les cellules souches mésenchymateuses (CSM) de la gelée de Wharton (WJ-MSCs) ainsi que les cellules souches mésenchymateuses de la moelle osseuse (BM-MSCs) ont été évaluées et comparées en tant que sources cellulaires potentielles pour la régénération ligamentaire. Les caractéristiques biologiques de ces cellules incluent l’adhésion cellulaire, la prolifération, la migration et la synthèse de matrice extracellulaire. Ces deux types de cellules ont montré une bonne biocompatibilité dans leurs interactions avec les matrices de support en PLCL et en soie. Aucune différence significative n'a été observée entre les WJ-MSCs et les BM-MSCs. Enfin, l'effet de la stimulation biomécanique sur la différentiation des CSM en tissu ligamentaire a été évalué par le biais d’un bioréacteur de traction-torsion. Bien que peu de cellules aient été détectées la matrice après 7 jours de stimulation, des CSM de forme allongée le long des fibres ont été détectées, ce qui permet de penser qu'il est possible de promouvoir la différenciation des biosubstituts matrice-cellules grâce à la stimulation mécanique en bioréacteur. En conclusion, cette étude démontre le potentiel prometteur de l’association de cellules souches mésenchymateuses issues de la gelée de Wharton ou de la moelle osseuse avec une matrice de support composite soie/PLCL pour la régénération ligamentaire dans le futur. / Ligament tissue engineering offers a potential approach to recover or replace injured ligament. The three essential elements that have been investigated towards ligament regeneration consist in a suitable scaffold, an adapted cell source, and the supply of biomechanical/biochemical stimulations. In the current study, synthetic polymer poly (L-lactide-co-ε-caprolactone) (PLCL) and silk have been evaluated as suitable candidates to constitute an adapted scaffold. A series of multilayer braided scaffolds based on PLCL and silk, as well as an original silk/PLCL composite scaffold, have been developed and compared. The conducted physicochemical and biological characterizations have demonstrated that both PLCL and silk constitute adapted candidate material to form ligament scaffolds from the mechanical and biological points of view. Moreover, it has been observed that silk/PLCL composite scaffold resulted in adequate mechanical properties and biocompatibility, and therefore could constitute suitable candidate scaffolds for ligament tissue engineering. Both Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) and Bone marrow mesenchymal stem cells (BM-MSCs) have been evaluated to be cell source for ligament regeneration. MSCs behaviors including cell attachment, proliferation, migration and extracellular matrix synthesis have been investigated. In the present study, both MSCS showed a good biocompatibility to interact with PLCL and silk scaffolds. No significant differences have been detected between WJ-MSCs and BM-MSCs. Finally, the effect of biomechanical stimulation on MSCs differentiation towards ligament tissue has been carried out with a tension-torsion bioreactor. Although few cells were detected on scaffold after 7 days of stimulation, MSCs were observed to exhibit an elongated shape along the longitudinal direction of fibers, which may indicate that an adapted mechanical stimulation could promote MSC-scaffold constructs differentiation towards ligamentous tissue. As a conclusion, this study demonstrates the potential of WJ-MSCs and BM-MSCs combined with a new silk/PLCL composite scaffold towards ligament regeneration.
|
14 |
Novel Possibilities for Advanced Molecular Structure Design for Polymers and NetworksFinne, Anna January 2003 (has links)
Synthetic and degradable polymers are an attractive choicein many areas, since it is possible to control the way in whichthey are manufactured; more specifically, pathways tomanipulate the architecture, the mechanical properties and thedegradation times have been identified. In this work,L-lactide, 1,5-dioxepan-2-one and ε-caprolactone were usedas monomers to synthesize polymers with different architecturesby ring-opening polymerization. By using novel initiators,triblock copolymers, functionalized linear macromonomers andstar-shaped aliphatic polyesters with well-defined structureshave been synthesized. To synthesize triblock copolymers,cyclic germanium initiators were studied. The polymerizationproceeded in a controlled manner although the reaction rateswere low. To introduce functionality into the polymer backbone,functionalized cyclic tin alkoxides were prepared and used asinitiators. During the insertion-coordination polymerization,the initiator fragment consisting mainly of a double bond wasincorporated into the polymer backbone. The double bond wasalso successfully epoxidized and this gave unique possibilitiesof synthesizing graft polymers with precise spacing. Themacromonomer technique is a very effective method for producingwell-defined graft polymers. Spirocyclic tin initiators weresynthesized and used to construct star-shaped polymers. Thestar-shaped polymers were subsequently crosslinked in apolycondensation reaction. These crosslinked structures swelledin water, and swelling tests showed that by changing thestructure of the hydrogel network, the degree of swelling canbe altered. A first evaluation of the surface characteristicsof the linear triblock copolymers was also performed. AFManalysis of the heat-treated surfaces revealed nanometer-scalefibers and tests showed that keratinocytes were able to growand proliferate on these surfaces. / QC 20100602
|
15 |
Single-Step Covalent Functionalization of Polylactide Surfaces / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)Källrot, Martina January 2005 (has links)
<p>Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation.</p><p>In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM.</p> / <p>Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler.</p><p>I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM.</p>
|
16 |
Covalent Surface Modification of Degradable Polymers for Increased Biocompatibility / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)Källrot, Martina January 2005 (has links)
Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation. In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM. / Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler. I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM. / QC 20101014
|
Page generated in 0.0605 seconds