• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 9
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 94
  • 94
  • 94
  • 22
  • 16
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Poly(ethylene glycol) Microgels Formed by a Precipitation Reaction as Drug Delivery Vehicles

Thompson, Susan Marie 18 December 2012 (has links)
No description available.
12

Polyamide desalination membrane characterization and surface modification to enhance fouling resistance

Van Wagner, Elizabeth Marie 31 January 2011 (has links)
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ([microgram]/cm2), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling. / text
13

New grafted PLA-g-PEG polymeric nanoparticles used to improve bioavailability of oral drugs

Mokhtar, Mohamed 02 1900 (has links)
No description available.
14

Water transport study in crosslinked poly(ethylene oxide) hydrogels as fouling-resistant membrane coating materials

Ju, Hao 15 September 2010 (has links)
The major objective of this research is a systematic experimental exploration of hydrophilic materials that can be applied as coating materials for conventional ultrafiltration (UF) membranes to improve their fouling resistance against organic components. This objective is achieved by developing new, fouling-reducing membrane coatings and applying these coatings to conventional UF membranes, which can provide unprecedented reduction in membrane fouling and marked improvements in membrane lifetime. Novel polymeric materials are synthesized via free-radical photopolymerization of mixtures containing poly(ethylene glycol) diacrylate (PEGDA), photoinitiator, and water. PEGDA chain length (n=10-45, where n is the average number of ethylene oxide units in the PEGDA molecule) and water content in the prepolymerization mixture (0-80 wt.%) were varied. Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization mixture. Specifically, for XLPEGDA prepared with PEGDA (n=13), water permeability increased from 0.6 to 150 L um/(m2 h bar) as prepolymerization water content increased from 0 to 80 wt.%. Water permeability also increased with increasing PEGDA chain length. Moreover, water permeability exhibits a strong correlation with equilibrium water uptake. However, solute rejection, probed using poly(ethylene glycol)s of well defined molar mass, decreased with increasing prepolymerization water content and increasing PEGDA chain length. That is, there is a tradeoff between water permeability and separation properties: Materials with high water permeability typically exhibit low solute rejections, and vice versa. The fouling resistance of XLPEGDA materials was characterized via contact angle measurements and static protein adhesion experiments. From these results, XLPEGDA surfaces are more hydrophilic in samples prepared at higher prepolymerization water content or with longer PEGDA chains, and the more hydrophilic surfaces generally exhibit less BSA accumulation. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes. / text
15

The Development of Photosensitive Surfaces to Control Cell Adhesion and Form Cell Patterns

Cheng, Nan 13 September 2012 (has links)
Cell adhesion is the first step of cell response to materials and the extracellular matrix (ECM), and is essential to all cell behaviours such as cell proliferation, differentiation, migration and apoptosis for anchor-dependent cells. Therefore, studies of cell attachment have important implications to control and study cell behaviours. During many developed techniques for cell attachment, the manipulation of surface chemistry is a very important method to control initial cell attachment. To control cell adhesion on a two-dimensional surface is a simple model to study cell behaviours, and is a fundamental topic for cell biology, tissue engineering, and the development of biosensors. From the engineering point of view, the preparation of a material with controllable surface chemistry can help studies of cell behaviours and help scientists understand how surface features and chemistry influence cell behaviours. During the fabrication, the challenge is to create a surface with heterogeneous surface properties in the micro scale and subsequently to guide cell initial adhesion. In order to control cell adhesion in a spatial and temporal manner, a photochemical method to control surface chemistry was employed to control the surface property for cell adhesion in this project. Two photocleavable derivatives of the nitrobenzyl group were tried on two types of surfaces: a model self-assembled monolayer (SAM) with alkanethiol-gold surface and biodegradable chitosan. Reactive functional groups on two different surfaces can be inactivated by covalent binding with these photocleavable molecules, and light can be further introduced into the system as a stimulus to recover their reactivity. By simply applying a photomask with diffe
16

Solubility Ratios, Encapsulation Efficiency, and Size of Beta-sitosterol Loaded Poly(Lactide)-Block-Poly(Ethylene glycol) Polymeric Micelles

Alqarni, Ali 31 July 2019 (has links)
β-sitosterol/poly(ethylene glycol)-block-poly(lactic acid) (PLA-b-PEG) complexes were prepared by solution blending in purified water and ethanol. The mixture of water and ethanol is a suitable solvent system for the two components. The complex was studied by using Nuclear Magnetic Resonance (NMR) spectroscopy and Differential Scanning Calorimetry (DSC). β-sitosterol is a drug that may reduce the swelling of benign prostatic hyperplasia (BPH) and diminishing inflammation. However, it is hydrophobic and difficult to deliver in aqueous solution. Since PLA-b-PEG has amphiphilic properties, the complex described here may enhance delivery of this drug for treatment of BPH. Proton NMR (1HNMR) of the complexes shows that the methylene (CH2) protons of the PEG, the (-O-CH-) of PLA, and (CH3) of PLA are slightly shifted because of its non-covalent interaction with β-sitosterol. The complex formation was supported by 2-D NMR (NOESY) spectroscopy. NOESY spectra show cross peaks, indicating the interaction between the two components. DSC of the complexes shows thermal characteristics that are different from the individual components. In particular, the PEG in the complex shows a lower melting point and decreased crystallinity compared to the pure PEG. The melting point is lowered from 57°C to 55.3 °C for the PEG-b-PLA/β-sitosterol (5%) complex. Under the same condition, the melting point of PLA dropped from 170 °C to 130 °C. Atomic force microscopy shows changes in the surface morphology of the copolymer from crystalline to amorphous when incorporated with the drug. NMR, DSC, AFM, and MTT assay studies suggest the formation of a relatively stable β-sitosterol/poly(lactic acid)-block-poly(ethylene glycol) complex. The cell proliferation assay (MTT assay) suggests significant inhibition of the stimulation of growth of prostate cancer cells upon addition the complex.
17

Probing Protein Adsorption Modes onto Poly(Ethylene Glycol) Brushes by Neutron Reflection

Schollier, Audrey 18 March 2011 (has links)
Adsorption of proteins at interfaces has an important role in biotechnological and pharmaceutical applications. Indeed, several undesirable processes are related to protein adsorption, as for example: fouling of contact lenses, clotting on blood contacting devices, triggering inammation around articial organs, diminished circulation time of therapeutic proteins and drug bearing liposomes. Neutral water soluble polymers, such as poly(ethylene glycol) (PEG), are used to repress protein adsorption: by coating the surface with a polymer brush, a "cushion" is created between the protein and the surface, that can reduce, or even completely repress the adsorption. Understanding the mechanism that inhibits the adsorption at interfaces is an active field of research, and could lead to relevant improvements in biomaterials performances and design. A clear understanding of the mechanism of protein adsorption onto polymer brushes is still missing. The first models describing the interactions of a polymer brush with adsorbing particles predicted two adsorption modes: primary adsorption at the grafting surface, and secondary adsorption at the outer edge of the brush (occurring for large cylindrical proteins). Primary adsorption can be repressed by increasing the grafting density of the brush, and secondary adsorption by increasing its thickness, in agreement with the experiments reported in the literature. But experimental evidences (a maximum in the adsorbed amount observed for long brushes) suggested then the existence of a third mode: ternary adsorption within the brush itself, due to attractive interactions between the protein and the brush. Standard techniques can in general only probe the total adsorbed amount. The aim of this work was to separate primary and ternary adsorption isotherms, by using neutron reectivity and deuterated proteins. As neutrons interact differently with hydrogen and deuterium atoms, the contrast between the hydrogenated brush and the deuterated protein is high enough to separate the two contributions. We studied the adsorption of deuterated myoglobin on PEG brushes with different degrees of polymerisation (N = 56, 146 and 770), and as a function of the area per grafted chain. The contribution of primary and ternary adsorption was separated for the different systems, and the adsorbed amount was extracted and the adsorption isotherms compared to the theoretical predictions. The ability to distinguish between the different adsorption modes, and the quantification of their relative contribution to the overall amount of adsorbed proteins, represents a major advance in optimising surface properties. In particular, the occurrence of ternary adsorption onto PEG brushes affects their status as tool for repressing protein adsorption. L’adsorption de protéines aux interfaces a un rôle important pour certaines applications pharmaceutiques ou biotechnologiques. En effet, plusieurs processus indésirables sont liés à l’adsorption de protéines, par exemple l’encrassement de lentilles de contact, la coagulation dans des appareils contenant du sang, l’inflammation d’organes artificiels ou encore la diminution du temps de circulation dans le corps de protéines ou liposomes thérapeutiques. Certains polymères, tels que le polyéthylène glycol (PEG), sont utilisés pour réprimer l’adsorption de protéines : en greffant une brosse de PEG sur la surface, une couche est créée entre la protéine et celle-ci qui diminue, voire même réprime complètement l’adsorption. Comprendre le mécanisme qui entrave l’adsorption aux interfaces est un sujet de recherche actif, qui pourrait mener à des améliorations significatives dans la conception de biomatériaux. À ce jour, la compréhension du mécanisme d’adsorption de protéines sur des brosses de polymère n’est pas claire. Les premiers modèles décrivant les interactions entre brosses de polymères et particules adsorbantes prédisaient deux modes d’adsorption : l’adsorption primaire sur la surface de greffage, et l’adsorption secondaire à l’extérieur de la brosse (pour les grandes protéines cylindriques uniquement). L’adsorption primaire peut-être réprimée en augmentant la densité de greffage de la brosse, et l’adsorption secondaire en augmentant son épaisseur, en accord avec les expériences reportées dans la littérature. Mais d’autres évidences expérimentales (un maximum dans la quantité adsorbée observé pour les brosses longues) ont ensuite suggéré l’existence d’un troisième mode : l’adsorption ternaire à l’intérieur même de la brosse, due aux interactions attractives entre la protéine et la brosse. Les techniques standards peuvent en général mesurer la quantité adsorbée totale. Le but de ce travail était de séparer les isothermes d’adsorption primaire et ternaire, en utilisant la réflectivité de neutrons et des protéines deutérées. Comme les neutrons interagissent différemment avec les atomes d’hydrogène ou de deutérium, le contraste entre la brosse hydrogénée et la protéine deutérée est ainsi suffisant pour séparer les deux contributions. Nous avons étudié l’adsorption de myoglobine deutérée sur des brosses de PEG avec différents degrés de polymérisation (N = 56, 146 and 770), en fonction de l’aire par chaîne Σ. La contribution des adsorptions primaire et ternaire put être séparée pour les différents systèmes, et les quantités adsorbées extraites pour finalement comparer les isothermes d’adsorption aux prédictions théoriques. La possibilité de distinguer les différents modes d’adsorption, et la quantification de leur contribution relative à la quantité totale de protéines adsorbées représente une avancée majeure dans l’optimisation des propriétés des surfaces. L’adsorption ternaire dans les brosses de PEG en particulier remet en question leur utilisation pour réprimer l’adsorption de protéines.
18

Biomimetic PEG Hydrogels for ex vivo Hematopoietic Stem Cell Expansion

January 2012 (has links)
Hematopoietic stem cells (HSCs) are commonly used in the treatment of blood cancers, like leukemia, and other cancers where radiation or chemotherapy damages the native HSC population. The development of a novel system to study and maintain HSCs ex vivo would give researchers and clinicians the ability to investigate the basic biological processes of HSCs, improve current treatment regimens, and explore their use in new therapies. The work in this thesis focuses on the development of a synthetic PEG hydrogel scaffold that accurately mimics aspects of the HSC microenvironment and can expand clinically relevant HSC populations. PEG hydrogel well surfaces were covalently functionalized with bioactive factors known to be critical in controlling HSC fate in vivo. In initial studies, 32D cells, a myeloid progenitor, were cultured in the wells for 6 days. On surfaces with the adhesive RGDS peptide sequence, 32D cell adhesion increased concurrently with RGDS surface concentrations. With the immobilization of two niche cytokines, SCF and SDF1α, onto hydrogel surfaces, 32D cells demonstrated significant increases in adhesion and spreading. These results confirmed that hematopoietic cell behavior could be controlled through the design of the bioactive PEG scaffold. In studies with a primary hematopoietic cell population (c-kit + , lin - ), the effects of bioactive molecules on cell expansion and differentiation were investigated after 2 weeks in culture. The adhesive peptides sequences, RGDS and CS1, and four niche proteins, SCF, SDF1α, JAG1, and IFNγ, were covalently tethered to hydrogel well surfaces. Primary cells proliferated significantly on gels containing SCF and IFNγ though only SCF was capable of preventing HSC differentiation. Cells cultured on surfaces functionalized with JAG1 and SDF1α did not proliferate extensively, but they were able to maintain primitive HSC populations. Primary c-kit + cells were also encapsulated within biodegradable PEG hydrogels and cultured for 2-5 weeks. Cells remained viable for 5 weeks in culture, and preliminary results indicated minimal cell differentiation. In this work, biomimetic PEG hydrogels were successfully employed to expand HSC populations in both two and three dimensions. The ability to generate large populations of primitive HSCs ex vivo has broad clinical and research implications.
19

The Development of Photosensitive Surfaces to Control Cell Adhesion and Form Cell Patterns

Cheng, Nan 13 September 2012 (has links)
Cell adhesion is the first step of cell response to materials and the extracellular matrix (ECM), and is essential to all cell behaviours such as cell proliferation, differentiation, migration and apoptosis for anchor-dependent cells. Therefore, studies of cell attachment have important implications to control and study cell behaviours. During many developed techniques for cell attachment, the manipulation of surface chemistry is a very important method to control initial cell attachment. To control cell adhesion on a two-dimensional surface is a simple model to study cell behaviours, and is a fundamental topic for cell biology, tissue engineering, and the development of biosensors. From the engineering point of view, the preparation of a material with controllable surface chemistry can help studies of cell behaviours and help scientists understand how surface features and chemistry influence cell behaviours. During the fabrication, the challenge is to create a surface with heterogeneous surface properties in the micro scale and subsequently to guide cell initial adhesion. In order to control cell adhesion in a spatial and temporal manner, a photochemical method to control surface chemistry was employed to control the surface property for cell adhesion in this project. Two photocleavable derivatives of the nitrobenzyl group were tried on two types of surfaces: a model self-assembled monolayer (SAM) with alkanethiol-gold surface and biodegradable chitosan. Reactive functional groups on two different surfaces can be inactivated by covalent binding with these photocleavable molecules, and light can be further introduced into the system as a stimulus to recover their reactivity. By simply applying a photomask with diffe
20

Three-Dimensional Biomimetic Patterning to Guide Cellular Migration and Organization

Hoffmann, Joe 24 July 2013 (has links)
This thesis develops a novel photopatterning strategy for biomimetic scaffolds that enables spatial and biochemical control of engineered cellular architectures, such as the microvasculature. Intricate tools that allow for the three dimensional (3D) manipulation of biomaterial microenvironments will be critical for organizing cellular behavior, directing tissue formation, and ultimately, developing functional therapeutics to treat patients with critical organ failure. Poly(ethylene glycol) (PEG) based hydrogels, which without modification naturally resist protein adsorption and cellular adhesion, were utilized in combination with a two-photon laser patterning approach to covalently immobilize specific biomolecules in custom-designed, three-dimensional (3D) micropatterns. This technique, known as two-photon laser scanning lithography (TP-LSL), was shown in this thesis to possess the capability to micropattern multiple different biomolecules at modular concentrations into a single hydrogel microenvironment over a broad range of size scales with high 3D resolution. 3D cellular adhesion and migration were then explored in detail using time-lapse confocal microscopy to follow cells as they migrated along micropatterned tracks of various 3D size and composition. Further, in a valuable modification of TP-LSL, images from the endogenous microenvironment were converted into instructions to precisely direct the laser patterning of biomolecules within PEG-based hydrogels. 3D images of endogenous microvasculature from various tissues were directly converted into 3D biomolecule patterns within the hydrogel scaffold with precise pattern fidelity. While tissue engineers have previously demonstrated the formation of vessels through the encapsulation of endothelial cells and pericyte precursor cells within PEG-based hydrogels, the vessel structure had been random, uncoordinated, and therefore, ultimately non-functional. This thesis has utilized image guided TP-LSL to pattern biomolecules into a 3D structure that directs the organization of vessels to mimic that of the endogenous tissue vasculature. TP-LSL now stands as a valuable tool to control the microstructure of engineered cellular architectures, thereby providing a critical step in the development of cellularized scaffolds into functional tissues. Ultimately, this thesis develops new technologies that advance the field of regenerative medicine towards the goal of engineering viable organs to therapeutically treat the 18 patients who die every day waiting on the organ transplant list.

Page generated in 0.0534 seconds