• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 65
  • 53
  • 15
  • 10
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 292
  • 58
  • 49
  • 37
  • 35
  • 32
  • 28
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Hyperbranched Aromatic Polyesters and Their Application in Blends of Linear Polyamides

Fan, Zhirong 26 August 2009 (has links)
In the last two decades, hyperbranched (hb) polymers have drawn much attention and obtained intensive research activities both from industry and academia. They are known to have unique and interesting properties which derive from their three dimensional structure and the large number of functional groups. These structural characteristics provide high possibilities for controlling functional group interactions and modifications of other polymers in blends and therefore, they are expected to result in novel materials with desired properties. Furthermore, the easy synthetic accessibility of hb polymers by one-pot synthesis is advantageous as well and allows easy scale-up of laboratory reactions. Having the characteristics as mentioned above, hb polymers are considered good candidates for blend components or melt processing modifiers. In fact, hb polymers have already been used as blend components or additives aiming for different effects. In many cases, reduced viscosity and formation of miscible blends were observed by modification of a linear matrix polymer with hb polymers. More information will be introduced in the following theoretical section. In this work two hb polyester systems based on AB2 and A2+B3 approaches were synthesized and studied. Their possible applications as additives in the blends of linear polyamides were investigated.
232

Viability Study of Nylon-12 Carbon Fiber Filaments for Use in the Construction of a Powered Lower Body Exoskeleton via Fused Deposition Modeling by Means of Computer Simulation

Joiner, Michael Andrew Lown 05 1900 (has links)
Members of the elderly population is disproportionately prone to experiencing mobility impairment due to their aging bodies and as a result have frail bodies that are at a higher risk of grave injury due to falling. In order to combat this assistive mobility devices such as exoskeletons have been developed to help patients enhance their range of motion. With additive manufacturing techniques, such as fused deposition modeling (FDM), becoming a more mainstream form of design, the inclusion of lightweight polymers such as nylon 12 as primary construction materials for these devices has increased. In this thesis computer aided design (CAD) software was used to design a prototype lower body exoskeleton and simulation software was used to give the device the characteristics of Stratasys' nylon 12 carbon fiber FDM material to verify it if could be used as the primary construction material for this device when extruded from a FDM printer on either the XZ or ZX printing plane. From the simulations it was found that the material printed along the XZ plane could create a device that could withstand the weight of an average elderly male patient (200 lbs.) as well as the 35 lbs. of force applied to the device by a linear actuation motor that would be used to extend and contract the exoskeleton leg.
233

Material parameter identification of a thermoplastic using full-field calibration

Prabhu, Nikhil January 2020 (has links)
Finite element simulation of thermoplastic components is gaining importance as the companies aim to avoid overdesign of the components. Cost of the component can be minimized by using an adequate amount of material for its application. Life of the component, in a particular application, can be predicted as early as during its design phase with the help of computer simulations. To achieve reliable simulation results, an accurate material model which can predict the material behaviour is vital. Most material models consist of a number of material parameters that needs to be fed into them. These material parameters can be identified with the inputs from physical tests. The accuracy of the data extracted from the physical tests, however, remains the base for the aforementioned process. The report deals with the implementation of optical measurement technique such as Digital Image Correlation (DIC) in contrast with the conventional extensometers. A tensile test is conducted on a glass fibre reinforced thermoplastic specimen, according to ISO 527-2/1A, to extract the experimental data with the help of DIC technique. The material behavior is reproduced within a finite element analysis software package LS-DYNA, with the combination of elastoplastic model called *MAT_024 and stress state dependent damage and failure model called GISSMO. The tensile test is performed under quasi-static condition to rule out the strain rate dependency of the thermoplastic material. The mesh sensitivity of the damage model is taken into account with the element size regularization. The thesis concerns setting up a routine for material parameter identification of thermoplastics by full-field calibration (FFC) approach. Also, comparison of the strain field in the specimen, obtained through the newly set up routine against the regular non-FFC i.e. extensometer measurement routine. The major objective being, through the comparisons, a qualitative assessment of the two routines in terms of calibration time vs. gain in simulation accuracy. Material models obtained through both the routines are implemented in three-point and four-point bending simulations. The predicted material behaviors are evaluated against experimental tests.
234

Phase Morphology and Orientation Development of Polymer Blends in Melt Processing

Yang, Jinhai 12 May 2008 (has links)
No description available.
235

Improved high velocity cold copaction processing : polymer powder to high performance parts

Azhdar, Bruska January 2005 (has links)
A uniaxial High-Velocity Compaction (HVC) process for polymer powder using a cylindrical, hardened steel die and a new technique with relaxation assist was tested with a focus on the compactibility characteristics and surface morphology of the compacted materials using various heights of relaxation assist device with different compacting profiles. Relaxation assist device was presented as a new technique to reduce springback, pull-out phenomenon and to improve the compaction process. The basic phenomena associated with HVC are explained and the general energy principle is introduced to explain pull-out phenomenon during the decompacting stage. In this study, polyamide-11 powders with different particle size distributions have been compacted with the application of different compaction profiles, e.g. different energies and velocities. It was found that the relative green density is influenced more by the pre-compacting (primary compaction step) than by the post-compacting (secondary compaction step). Experimental results for different compaction profiles were presented showing the effect of varying the opposite velocity during the decompacting stage and how to improve the homogeneous densification between the upper and lower surface and the evenness of the upper surface of the compacted powder bed by using relaxation assists, and the influences of the relaxation assist device on the process characteristics. It was found that the relaxation assist improves the compaction of the polymer powder by locking the powder bed in the compacted form. In addition, the relative times of the compacting stage, decompacting stage and the reorganisation of the particles can be controlled by altering the height of the relaxation assist. It was found that the high-velocity compaction process is an interruption process and that the delay times between the pressure waves can be reduced by increasing the height of the relaxation assist device. Furthermore, the first gross instantaneous springback and the total elastic springback are reduced. Two bonding strain gauges and a high-speed video camera system were used to investigate the springback phenomenon during the compaction process. Scanning electron microscopy (SEM) and image computer board Camera (IC-PCI Imaging Technology) were used to the study the morphological characteristics, the limit of plastic deformation and particle bonding by plastic flow at contact points, and pull-out phenomena. / QC 20100506
236

Process Development For The Fabrication Of Mesoscale Electrostatic Valve Assembly

Dhru, Shailini Rajiv 01 January 2007 (has links)
This study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 µm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 µm thick resist pattern on silicon wafer. This photo layer acts as a mask for deep reactive ion etching. Wet chemical etching process is developed to etch kapton polyamide film. This etched film is used as a stand off, gap between two electrodes of the electrostatic valve assembly. The criterion is to develop the processed using standard industry tools. Pre post etch effects, such as, surface roughness, etching pattern, critical dimensions on the samples are measured with Veeco profilometer.
237

Validation of the modified rule of mixtures using a combination of fibre orientation and fibre length measurements

Hine, P., Parveen, Bushra, Brands, D., Caton-Rose, Philip D. 04 May 2014 (has links)
No / The goal of this study was to investigate the fibre orientation distribution (FOD), and subsequent mechanical properties, of an injection moulded plate with two different number averaged fibre lengths, termed in this paper medium (1.35 mm) and long (2.40 mm). Fibre orientation measurements (FOD) were made using the 2D elliptical section method and an in-house developed image analyser. The samples were injected from a pin gate located at the centre and top of the plate. Expansion flow on the divergent flow front from this pin gate resulted in a core region with circumferential alignment, while through thickness shear resulted in the usual realignment of fibres in the flow direction either side of the core, termed the shell layers. Two interesting aspects were discovered from these measurements. First, and most importantly, the FOD was found to be independent of the two fibre lengths in this study, and so predominantly controlled by the mould shape and the interaction with the flow front. Second, the fibres in the core region were found to be much closer packed than those in the shell regions. The interaction between the flow front and the mould shape resulted in a range of FOD across the moulded plate, from equal in-plane orientation at the centre of the plate, to highly aligned at the plate edge. This gave a very useful set of samples from which to test out the well known modified rule of mixtures (MROM). Often the fibre orientation distribution cannot be measured directly, but indirectly using the modified rule of mixtures model in reverse. The samples from this moulding (at two different average fibre lengths) gave an excellent opportunity to validate this often used approach. Both the tensile modulus and strength (measured parallel to the injection direction) were found to show a strong correlation with the measured fibre orientation, with a significant increase in both measures between the centre and the edge of both plates. The increased length of the ‘long’ fibre plate was found to give only a small increase in tensile modulus but a much larger increase in tensile strength. The tensile modulus showed a linear dependence with the measured fourth order orientation tensor average, 〈cos4 θ〉, with respect to the injection direction of the plate, as predicted by the modified rule of mixtures. Excellent agreement was found between the measured modulus and the predictions from the modified rule of mixtures, based only on measured quantities (matrix modulus, fibre fraction and average fibre length) for both plates.
238

Nobjects: Eine Serie

Kaufer, Raoul 17 November 2023 (has links)
Die hier gezeigte Skulptur als Minimodel aus dem 3D-Drucker (aus Polyamid, im Maßstab 1 : 20) ist eine freie Fantasie innerhalb einer Werkserie über mögliche Objekte, die ich NOBJECTS nenne. Diese wechseln zwischen geo-, bio- und technomorpher Gestaltung. In diesem konkreten Beispiel habe ich unter Nutzung der 3D-Gestaltungssoftware “Zbrush“ das skulpturale Objekt aus einem schlichten Quadrat abgeleitet, aus dem ein Obelisk als tragende Säule hervorwächst, die in die vier Himmelrichtungen weist.
239

Properties of nylon-6-based composite reinforced with coconut shell particles and empty fruit bunch fibres

Savetlana, S., Mulvaney-Johnson, Leigh, Gough, Timothy D., Kelly, Adrian L. 28 December 2017 (has links)
yes / Novel natural fibre composites of nylon-6 reinforced with coconut shell (CS) particles and empty fruit bunch (EFB) fibres have been investigated. Fillers were alkali treated before melt compounding with nylon-6. Mechanical, thermal and rheological properties of composites were measured. Tensile modulus was found to improve with both fillers up to 16% for nylon-6/CS composite and 10% for nylon-6/EFB composite, whereas a moderate increase in tensile strength was observed only with CS composites. Differences in the strengthening mechanisms were explained by the morphology of the two fillers, empty fruit bunch fibres having a weaker cellular internal structure. Observation of composite morphology using SEM showed that both fillers were highly compatible with nylon-6 due to its hydrophilic nature. Both fillers were found to cause a slight drop in crystallinity of the nylon matrix and to lower melt viscosity at typical injection moulding strain rates. Moisture absorption increased with addition of both fillers.
240

The Role of Penetrant Structure on the Transport and Mechanical Properties of a Thermoset Adhesive

Kwan, Kermit S. Jr. 24 August 1998 (has links)
In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants - n-alkanes and esters - were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters. A series of n-alkanes (C6-C17) and esters (C5-C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process. The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant. / Ph. D.

Page generated in 0.0323 seconds